Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
3.
Nat Cancer ; 4(9): 1345-1361, 2023 09.
Article in English | MEDLINE | ID: mdl-37743366

ABSTRACT

RET receptor tyrosine kinase is activated in various cancers (lung, thyroid, colon and pancreatic, among others) through oncogenic fusions or gain-of-function single-nucleotide variants. Small-molecule RET kinase inhibitors became standard-of-care therapy for advanced malignancies driven by RET. The therapeutic benefit of RET inhibitors is limited, however, by acquired mutations in the drug target as well as brain metastasis, presumably due to inadequate brain penetration. Here, we perform preclinical characterization of vepafestinib (TAS0953/HM06), a next-generation RET inhibitor with a unique binding mode. We demonstrate that vepafestinib has best-in-class selectivity against RET, while exerting activity against commonly reported on-target resistance mutations (variants in RETL730, RETV804 and RETG810), and shows superior pharmacokinetic properties in the brain when compared to currently approved RET drugs. We further show that these properties translate into improved tumor control in an intracranial model of RET-driven cancer. Our results underscore the clinical potential of vepafestinib in treating RET-driven cancers.


Subject(s)
Brain Neoplasms , Mutation , Brain , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Solvents
4.
Sci Rep ; 13(1): 8821, 2023 05 31.
Article in English | MEDLINE | ID: mdl-37258621

ABSTRACT

TAS-115 is an oral multi-receptor tyrosine kinase inhibitor that strongly inhibits kinases implicated in antitumor immunity, such as colony stimulating factor 1 receptor and vascular endothelial growth factor receptor. Because these kinases are associated with the modulation of immune pathways, we investigated the immunomodulatory activity of TAS-115. An in vitro cytokine assay revealed that TAS-115 upregulated interferon γ (IFNγ) and interleukin-2 secretion by T cells, suggesting that TAS-115 activated T cells. Gene expression analysis suggested that TAS-115 promoted M1 macrophage differentiation. In in vivo experiments, although TAS-115 exerted a moderate antitumor effect in the MC38 mouse colorectal cancer model under immunodeficient conditions, this effect was enhanced under immunocompetent conditions. Furthermore, combination of TAS-115 and anti-PD-1 antibody exhibited greater antitumor activity than either treatment alone. Flow cytometry analysis showed the increase in IFNγ- and granzyme B (Gzmb)-secreting tumor-infiltrating T cells by TAS-115 treatment. The combination treatment further increased the percentage of Gzmb+CD8+ T cells and decreased the percentage of macrophages compared with either treatment alone. These results highlight the potential therapeutic effect of TAS-115 in combination with PD-1 blockade, mediated via activation of antitumor immunity by TAS-115.


Subject(s)
CD8-Positive T-Lymphocytes , Neoplasms , Animals , Mice , Cell Line, Tumor , Disease Models, Animal , Interferon-gamma/metabolism , Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Receptor Protein-Tyrosine Kinases , Tumor Microenvironment
5.
Cancer Res ; 80(22): 4986-4997, 2020 11 15.
Article in English | MEDLINE | ID: mdl-32973082

ABSTRACT

FGFR signaling is deregulated in many human cancers, and FGFR is considered a valid target in FGFR-deregulated tumors. Here, we examine the preclinical profile of futibatinib (TAS-120; 1-[(3S)-[4-amino-3-[(3,5-dimethoxyphenyl)ethynyl]-1H-pyrazolo[3, 4-d] pyrimidin-1-yl]-1-pyrrolidinyl]-2-propen-1-one), a structurally novel, irreversible FGFR1-4 inhibitor. Among a panel of 296 human kinases, futibatinib selectively inhibited FGFR1-4 with IC50 values of 1.4 to 3.7 nmol/L. Futibatinib covalently bound the FGFR kinase domain, inhibiting FGFR phosphorylation and, in turn, downstream signaling in FGFR-deregulated tumor cell lines. Futibatinib exhibited potent, selective growth inhibition of several tumor cell lines (gastric, lung, multiple myeloma, bladder, endometrial, and breast) harboring various FGFR genomic aberrations. Oral administration of futibatinib led to significant dose-dependent tumor reduction in various FGFR-driven human tumor xenograft models, and tumor reduction was associated with sustained FGFR inhibition, which was proportional to the administered dose. The frequency of appearance of drug-resistant clones was lower with futibatinib than a reversible ATP-competitive FGFR inhibitor, and futibatinib inhibited several drug-resistant FGFR2 mutants, including the FGFR2 V565I/L gatekeeper mutants, with greater potency than any reversible FGFR inhibitors tested (IC50, 1.3-50.6 nmol/L). These results indicate that futibatinib is a novel orally available, potent, selective, and irreversible inhibitor of FGFR1-4 with a broad spectrum of antitumor activity in cell lines and xenograft models. These findings provide a strong rationale for testing futibatinib in patients with tumors oncogenically driven by FGFR genomic aberrations, with phase I to III trials ongoing. SIGNIFICANCE: Preclinical characterization of futibatinib, an irreversible FGFR1-4 inhibitor, demonstrates selective and potent antitumor activity against FGFR-deregulated cancer cell lines and xenograft models, supporting clinical evaluation in patients with FGFR-driven tumors. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/80/22/4986/F1.large.jpg.


Subject(s)
Antineoplastic Agents/therapeutic use , Drugs, Investigational/therapeutic use , Neoplasm Proteins/antagonists & inhibitors , Neoplasms/drug therapy , Pyrazoles/therapeutic use , Pyrimidines/therapeutic use , Pyrroles/therapeutic use , Receptors, Fibroblast Growth Factor/antagonists & inhibitors , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/metabolism , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Resistance, Neoplasm , Drugs, Investigational/administration & dosage , Drugs, Investigational/metabolism , Endometrial Neoplasms/drug therapy , Endometrial Neoplasms/genetics , Endometrial Neoplasms/metabolism , Female , Heterografts , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Mice , Mice, Inbred NOD , Mice, Nude , Mice, SCID , Multiple Myeloma/drug therapy , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , Neoplasm Proteins/metabolism , Neoplasm Transplantation , Neoplasms/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/therapeutic use , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Rats , Rats, Nude , Receptor, Fibroblast Growth Factor, Type 1/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 1/genetics , Receptor, Fibroblast Growth Factor, Type 2/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 2/genetics , Receptor, Fibroblast Growth Factor, Type 3/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 3/genetics , Receptor, Fibroblast Growth Factor, Type 4/antagonists & inhibitors , Receptor, Fibroblast Growth Factor, Type 4/genetics , Receptors, Fibroblast Growth Factor/genetics , Receptors, Fibroblast Growth Factor/metabolism , Stomach Neoplasms/drug therapy , Stomach Neoplasms/genetics , Stomach Neoplasms/metabolism
6.
Sci Rep ; 7(1): 7436, 2017 08 07.
Article in English | MEDLINE | ID: mdl-28785117

ABSTRACT

We have produced a superconducting binary-elements intercalated graphite, CaxSr1-xCy, with the intercalation of Sr and Ca in highly-oriented pyrolytic graphite; the superconducting transition temperature, T c, was ~3 K. The superconducting CaxSr1-xCy sample was fabricated with the nominal x value of 0.8, i.e., Ca0.8Sr0.2Cy. Energy dispersive X-ray (EDX) spectroscopy provided the stoichiometry of Ca0.5(2)Sr0.5(2)Cy for this sample, and the X-ray powder diffraction (XRD) pattern showed that Ca0.5(2)Sr0.5(2)Cy took the SrC6-type hexagonal-structure rather than CaC6-type rhombohedral-structure. Consequently, the chemical formula of CaxSr1-xCy sample could be expressed as 'Ca0.5(2)Sr0.5(2)C6'. The XRD pattern of Ca0.5(2)Sr0.5(2)C6 was measured at 0-31 GPa, showing that the lattice shrank monotonically with increasing pressure up to 8.6 GPa, with the structural phase transition occurring above 8.6 GPa. The pressure dependence of T c was determined from the DC magnetic susceptibility and resistance up to 15 GPa, which exhibited a positive pressure dependence of T c up to 8.3 GPa, as in YbC6, SrC6, KC8, CaC6 and Ca0.6K0.4C8. The further application of pressure caused the rapid decrease of T c. In this study, the fabrication and superconducting properties of new binary-elements intercalated graphite, CaxSr1-xCy, are fully investigated, and suitable combinations of elements are suggested for binary-elements intercalated graphite.

7.
PLoS One ; 11(10): e0164830, 2016.
Article in English | MEDLINE | ID: mdl-27736957

ABSTRACT

Approximately 25-40% of patients with lung cancer show bone metastasis. Bone modifying agents reduce skeletal-related events (SREs), but they do not significantly improve overall survival. Therefore, novel therapeutic approaches are urgently required. In this study, we investigated the anti-tumor effect of TAS-115, a VEGFRs and HGF receptor (MET)-targeted kinase inhibitor, in a tumor-induced bone disease model. A549-Luc-BM1 cells, an osteo-tropic clone of luciferase-transfected A549 human lung adenocarcinoma cells (A549-Luc), produced aggressive bone destruction associated with tumor progression after intra-tibial (IT) implantation into mice. TAS-115 significantly reduced IT tumor growth and bone destruction. Histopathological analysis showed a decrease in tumor vessels after TAS-115 treatment, which might be mediated through VEGFRs inhibition. Furthermore, the number of osteoclasts surrounding the tumor was decreased after TAS-115 treatment. In vitro studies demonstrated that TAS-115 inhibited HGF-, VEGF-, and macrophage-colony stimulating factor (M-CSF)-induced signaling pathways in osteoclasts. Moreover, TAS-115 inhibited Feline McDonough Sarcoma oncogene (FMS) kinase, as well as M-CSF and receptor activator of NF-κB ligand (RANKL)-induced osteoclast differentiation. Thus, VEGFRs/MET/FMS-triple inhibition in osteoclasts might contribute to the potent efficacy of TAS-115. The fact that concomitant dosing of sunitinib (VEGFRs/FMS inhibition) with crizotinib (MET inhibition) exerted comparable inhibitory efficacy for bone destruction to TAS-115 also supports this notion. In conclusion, TAS-115 inhibited tumor growth via VEGFR-kinase blockade, and also suppressed bone destruction possibly through VEGFRs/MET/FMS-kinase inhibition, which resulted in potent efficacy of TAS-115 in an A549-Luc-BM1 bone disease model. Thus, TAS-115 shows promise as a novel therapy for lung cancer patients with bone metastasis.


Subject(s)
Bone Neoplasms/drug therapy , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-met/metabolism , Quinolines/therapeutic use , Receptors, Vascular Endothelial Growth Factor/metabolism , Thiourea/analogs & derivatives , A549 Cells , Animals , Bone Neoplasms/diagnostic imaging , Bone Neoplasms/secondary , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Crizotinib , Disease Models, Animal , Humans , Indoles/therapeutic use , Indoles/toxicity , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Male , Mice , Mice, Inbred BALB C , Mice, Nude , Osteoclasts/cytology , Osteoclasts/drug effects , Osteoclasts/metabolism , Protein Kinase Inhibitors/toxicity , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Pyrazoles/therapeutic use , Pyrazoles/toxicity , Pyridines/therapeutic use , Pyridines/toxicity , Pyrroles/therapeutic use , Pyrroles/toxicity , Quinolines/toxicity , RANK Ligand/metabolism , Receptor, Macrophage Colony-Stimulating Factor/antagonists & inhibitors , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Signal Transduction/drug effects , Sunitinib , Thiourea/therapeutic use , Thiourea/toxicity , Tibia/diagnostic imaging , Tibia/metabolism , Tibia/pathology , Transplantation, Heterologous , X-Ray Microtomography
8.
J Biol Chem ; 291(40): 20891-20899, 2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27539855

ABSTRACT

The tyrosine kinase inhibitor TAS-115 that blocks VEGF receptor and hepatocyte growth factor receptor MET signaling exhibits antitumor properties in xenografts of human gastric carcinoma. In this study, we have evaluated the efficacy of TAS-115 in preventing prostate cancer metastasis to the bone and bone destruction using the PC3 cell line. When PC3 cells were injected into proximal tibiae in nude mouse, severe trabecular and cortical bone destruction and subsequent tumor growths were detected. Oral administration of TAS-115 almost completely inhibited both PC3-induced bone loss and PC3 cell proliferation by suppressing osteoclastic bone resorption. In an ex vivo bone organ culture, PC3 cells induced osteoclastic bone resorption when co-cultured with calvarial bone, but TAS-115 effectively suppressed the PC3-induced bone destruction. We found that macrophage colony-stimulating factor-dependent macrophage differentiation and subsequent receptor activator of NF-κB ligand-induced osteoclast formation were largely suppressed by adding TAS-115. The phosphorylation of the macrophage colony-stimulating factor receptor FMS and osteoclast related kinases such as ERK and Akt were also suppressed by the presence of TAS-115. Gene expression profiling showed that FMS expression was only seen in macrophage and in the osteoclast cell lineage. Our study indicates that tyrosine kinase signaling in host pre-osteoclasts/osteoclasts is critical for bone destruction induced by tumor cells and that targeting of MET/VEGF receptor/FMS activity makes it a promising therapeutic candidate for the treatment of prostate cancer patients with bone metastasis.


Subject(s)
Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone Resorption/metabolism , Gene Expression Regulation/drug effects , MAP Kinase Signaling System/drug effects , Osteoclasts/metabolism , Prostatic Neoplasms/metabolism , Proto-Oncogene Proteins c-met/metabolism , Quinolines/pharmacology , Receptors, Vascular Endothelial Growth Factor/metabolism , Thiourea/analogs & derivatives , Animals , Bone Neoplasms/genetics , Bone Neoplasms/pathology , Bone Resorption/drug therapy , Bone Resorption/pathology , Cell Differentiation , Cell Line, Tumor , Coculture Techniques , Extracellular Signal-Regulated MAP Kinases/genetics , Extracellular Signal-Regulated MAP Kinases/metabolism , Humans , Male , Mice , Mice, Nude , Neoplasm Metastasis , Osteoclasts/pathology , Prostatic Neoplasms/drug therapy , Prostatic Neoplasms/genetics , Prostatic Neoplasms/pathology , Proto-Oncogene Proteins c-akt/genetics , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Proto-Oncogene Proteins c-met/genetics , Receptor, Macrophage Colony-Stimulating Factor/genetics , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Receptors, Vascular Endothelial Growth Factor/genetics , Thiourea/pharmacology
9.
Sci Rep ; 6: 30946, 2016 08 08.
Article in English | MEDLINE | ID: mdl-27499373

ABSTRACT

Pressure dependence of the electronic and crystal structures of KxFe2-ySe2, which has pressure-induced two superconducting domes of SC I and SC II, was investigated by x-ray emission spectroscopy and diffraction. X-ray diffraction data show that compressibility along the c-axis changes around 12 GPa, where a new superconducting phase of SC II appears. This suggests a possible tetragonal to collapsed tetragonal phase transition. X-ray emission spectroscopy data also shows the change in the electronic structure around 12 GPa. These results can be explained by the scenario that the two SC domes under pressure originate from the change of Fermi surface topology. Our results here show the pronounced increase of the density of states near the Fermi surface under pressure with a structural phase transition, which can help address our fundamental understanding for the appearance of the SC II phase.

10.
Mol Cancer Ther ; 12(12): 2685-96, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24140932

ABSTRACT

VEGF receptor (VEGFR) signaling plays a key role in tumor angiogenesis. Although some VEGFR signal-targeted drugs have been approved for clinical use, their utility is limited by associated toxicities or resistance to such therapy. To overcome these limitations, we developed TAS-115, a novel VEGFR and hepatocyte growth factor receptor (MET)-targeted kinase inhibitor with an improved safety profile. TAS-115 inhibited the kinase activity of both VEGFR2 and MET and their signal-dependent cell growth as strongly as other known VEGFR or MET inhibitors. On the other hand, kinase selectivity of TAS-115 was more specific than that of sunitinib and TAS-115 produced relatively weak inhibition of growth (GI50 > 10 µmol/L) in VEGFR signal- or MET signal-independent cells. Furthermore, TAS-115 induced less damage in various normal cells than did other VEGFR inhibitors. These data suggest that TAS-115 is extremely selective and specific, at least in vitro. In in vivo studies, TAS-115 completely suppressed the progression of MET-inactivated tumor by blocking angiogenesis without toxicity when given every day for 6 weeks, even at a serum-saturating dose of TAS-115. The marked selectivity of TAS-115 for kinases and targeted cells was associated with improved tolerability and contributed to the ability to sustain treatment without dose reduction or a washout period. Furthermore, TAS-115 induced marked tumor shrinkage and prolonged survival in MET-amplified human cancer-bearing mice. These data suggest that TAS-115 is a unique VEGFR/MET-targeted inhibitor with improved antitumor efficacy and decreased toxicity.


Subject(s)
Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Quinolines/pharmacology , Receptors, Vascular Endothelial Growth Factor/antagonists & inhibitors , Thiourea/analogs & derivatives , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/toxicity , Cell Line, Tumor , Cell Proliferation/drug effects , Disease Models, Animal , Endothelial Cells/drug effects , Endothelial Cells/metabolism , Enzyme Activation/drug effects , Humans , Mice , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Phosphorylation/drug effects , Protein Kinase Inhibitors/administration & dosage , Protein Kinase Inhibitors/toxicity , Quinolines/administration & dosage , Thiourea/administration & dosage , Thiourea/pharmacology , Tumor Burden/drug effects , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Xenograft Model Antitumor Assays
SELECTION OF CITATIONS
SEARCH DETAIL
...