Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Appl Toxicol ; 43(3): 446-457, 2023 03.
Article in English | MEDLINE | ID: mdl-36101970

ABSTRACT

The amino acid derivative reactivity assay (ADRA), an alternative method for testing skin sensitization, has been established based on the molar concentration approach. However, the additional development of gravimetric concentration and fluorescence detection methods has expanded its range of application to mixtures, which cannot be evaluated using the conventional testing method, the direct peptide reactivity assay (DPRA). Although polymers are generally treated as mixtures, there have been no reports of actual polymer evaluations using alternative methods owing to their insolubility. Therefore, in this study, we evaluated skin sensitization potential of polymers, which is difficult to predict, using ADRA. As polymers have molecular weights ranging from several thousand to more than several tens of thousand Daltons, they are unlikely to cause skin sensitization due to their extremely low penetration into the skin, according to the 500-Da rule. However, if highly reactive functional groups remain at the ends or side chains of polymers, relatively low-molecular-weight polymer components may penetrate the skin to cause sensitization. Polymers can be roughly classified into three major types based on the features of their constituent monomers; we investigated the sensitization capacity of each type of polymer. Polymers with alert sensitization structures at their ends were classified as skin sensitizers, whereas those with no residual reactive groups were classified as nonsensitizers. Although polymers with a glycidyl group need to be evaluated carefully, we concluded that ADRA (0.5 mg/ml) is generally sufficient for polymer hazard assessment.


Subject(s)
Organic Chemicals , Skin , Animals , Skin/metabolism , Peptides/chemistry , Biological Assay/methods , Amino Acids/analysis , Animal Testing Alternatives/methods
2.
Chem Res Toxicol ; 35(11): 2107-2121, 2022 11 21.
Article in English | MEDLINE | ID: mdl-36315617

ABSTRACT

Amino acid derivative reactivity assay (ADRA) is an in chemico assay for assessing the skin sensitization potential of chemicals by evaluating the reactivity of nucleophilic reagents that mimic skin proteins. N-(2-(1-Naphthyl)acetyl)-l-cysteine (NAC) and α-N-(2-(1-naphthyl)acetyl)-l-lysine (NAL), used as nucleophilic reagents, are small-molecule derivatives of two different amino acids, each with a naphthalene ring attached. The rate of decrease in the amount of NAC or NAL in the reaction solution is evaluated in this assay as an indicator of the test substance's skin sensitization ability. However, the products formed between the nucleophilic reagent and the test substance, which play an important role in vivo, are not directly identified. Therefore, six highly reactive chemicals, including the proficiency substances listed in the OECD Test Guidelines─squaric acid diethyl ester, 2-methyl-2H-isothiazol-3-one (MI), p-benzoquinone, palmitoyl chloride, diphenylcyclopropenone (DPCP), and imidazolidinyl urea (IU)─were used to determine each formed product. Samples were prepared according to the standard ADRA method, and the formed products were predicted on the basis of the reaction mechanism. Excluding DPCP, the estimated structures were validated using mass spectrometry and nuclear magnetic resonance spectrometry on the synthesized samples. In this manner, the products of each nucleophile were confirmed for all examined test substances. The estimated structure products were obtained through a series of reactions initiated by the nucleophilic attack of NAC's thiol group or NAL's amino group on the test substance's electron-deficient carbonyl carbon. However, contrary to expectations, disulfide-linked-type ring-opened products were detected in the case of MI, and products with free formaldehyde in solution were detected in the case of IU. In summary, all skin sensitizers tested herein reacted with NAC and/or NAL to give products. This supports the theoretical validity of ADRA, which provides an indirect evaluation of the formed products based on a decrease in nucleophilic reagents.


Subject(s)
Animal Testing Alternatives , Skin , Animals , Animal Testing Alternatives/methods , Indicators and Reagents , Skin/metabolism , Biological Assay/methods , Cysteine/chemistry
3.
Nihon Yakurigaku Zasshi ; 157(5): 345-350, 2022.
Article in Japanese | MEDLINE | ID: mdl-36047150

ABSTRACT

Amino acid Derivative Reactivity Assay (ADRA) is an alternative method developed based on the principle of covalent bonding between sensitizer and proteins in the early stage of the mechanism of skin sensitization. The Direct Peptide Reactivity Assay (DPRA) with same principle previously listed in the OECD test guidelines (TG) have some problems such as precipitation of the test chemical in the reaction solution and co-elution of the peptide with the test chemical. While, instead of DPRA, the ADRA was developed using two chemically synthesized nucleophilic reagents-namely, NAC and NAL in which naphthalene rings with a high molar absorbance coefficient (MAC) in the ultraviolet range have been introduced to N-termini of the cysteine and lysine that can react with the test chemical. Therefore, in March 2016, we set up a validation team with the aim for adoption in the OECD TG, ADRA's validation tests were conducted. After reporting the results of validation study, holding a third-party evaluation meeting and two commenting rounds, ADRA was able to be adopted in the OECD TG in June 2019. In addition, since the introduction of naphthalene with a high MAC has made it possible to reduce the concentration, enabling the following items. 1) Decrease in the frequency of precipitation of the test chemicals in the reaction solution. 2) Decrease in the frequency of co-eluting of the nucleating reagent and the chemical. 3) Evaluation of chemicals with unknown molecular weight using the gravimetric approach. 4) High-sensitivity detection of nucleophilic reagents by the fluorescence method. 5) Evaluation of the mixture by a combination of the gravimetric approach and fluorescence detection.


Subject(s)
Animal Testing Alternatives , Organisation for Economic Co-Operation and Development , Animal Testing Alternatives/methods , Animals , Naphthalenes , Peptides/chemistry , Skin/metabolism
4.
J Appl Toxicol ; 42(6): 1078-1090, 2022 06.
Article in English | MEDLINE | ID: mdl-35043433

ABSTRACT

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative assay for skin sensitization listed in OECD test guideline 442C. ADRA evaluates the reactivity of sensitizers to proteins, which is key event 1 in the skin sensitization adverse outcome pathway. Although the current key event 1 evaluation method is a simple assay that evaluates nucleophile and test chemical reactivity, mixtures of unknown molecular weights cannot be evaluated because a constant molar ratio between the nucleophile and test chemical is necessary. In addition, because the nucleophile is quantified by HPLC, the frequency of co-eluting the test chemical and nucleophile increases when measuring multi-component mixtures. To solve these issues, test conditions have been developed using a 0.5 mg/mL test chemical solution and fluorescence-based detection. Since the practicality of these methods has not been substantiated, a validation test to confirm reproducibility was conducted in this study. The 10 proficiency substances listed in the ADRA guidelines were tested three times at five different laboratories. The results of both within- and between-laboratory reproducibility were 100%, and the results of ultraviolet- and fluorescence-based measurements were also consistent. In addition to the proficiency substances, a new positive control, squaric acid diethyl ester, was tested three times at the five laboratories. The results showed high reproducibility with N-(2-(1-naphthyl)acetyl)-l-cysteine depletion of 37%-52% and α-N-(2-(1-naphthyl)acetyl)-l-lysine depletion of 99%-100%. Thus, high reproducibility was confirmed in both evaluations of the 0.5 mg/mL test chemical and the fluorescence-based measurements, validating the practicability of these methods.


Subject(s)
Animal Testing Alternatives , Laboratories , Animal Testing Alternatives/methods , Animals , Biological Assay/methods , Cysteine/chemistry , Reproducibility of Results , Skin/metabolism
5.
J Appl Toxicol ; 42(7): 1159-1167, 2022 07.
Article in English | MEDLINE | ID: mdl-34993977

ABSTRACT

The amino acid derivative reactivity assay (ADRA) is an alternative method for evaluating key event 1 (KE-1) in the skin sensitization mechanism included in OECD TG442C (OECD, 2021). Recently, we found that ADRA with a 4-mM test chemical solution had a higher accuracy than the original ADRA (1 mM). However, ADRA (4 mM) has yet to be evaluated using integrated approaches to testing and assessment (IATA), a combination of alternative methods for evaluating KE. In this study, the sensitization potency of three defined approaches (DAs) using ADRA (4 mM) as KE-1 was predicted and compared with those of two additional ADRAs or direct peptide reactivity assay (DPRA): (i) "2 out of 3" approach, (ii) "3 out of 3" approach, and (iii) integrated testing strategy (ITS). In the hazard identification of chemical sensitizers, the accuracy of human data and local lymph node assay (LLNA) remained almost unchanged among the three approaches evaluated. Potency classifications for sensitization were predicted with the LLNA and human data sets using ITS. The potency classifications for the sensitization potency prediction accuracy of LLNA data using any alternative method were almost unchanged, at approximately 70%, and those with ITS were not significantly different. When ITS was performed using DPRA, the prediction accuracy was approximately 73% for human data, which was similar to that of the LLNA data; however, the accuracy tended to increase for all ADRA methods. In particular, when ITS was performed using ADRA (4 mM), the prediction accuracy was approximately 78%, which proved to be a practical level.


Subject(s)
Animal Testing Alternatives , Dermatitis, Allergic Contact , Amino Acids/chemistry , Animal Testing Alternatives/methods , Animals , Biological Assay/methods , Dermatitis, Allergic Contact/etiology , Dermatitis, Allergic Contact/metabolism , Humans , Local Lymph Node Assay , Organic Chemicals , Peptides/chemistry , Skin/metabolism
6.
J Appl Toxicol ; 42(2): 318-333, 2022 02.
Article in English | MEDLINE | ID: mdl-34855227

ABSTRACT

Amino acid derivative reactivity assay (ADRA) for skin sensitization was adopted as an alternative method in the 2019 OECD Guideline for the Testing of Chemicals (OECD TG 442C). The molar ratio of the nucleophilic reagent to the test chemicals in the reaction solution was set to 1:50. Imamura et al. reported that changing this molar ratio from 1:50 to 1:200 reduced in false negatives and improved prediction accuracy. Hence, a ring study using ADRA with 4 mM of a test chemical solution (ADRA, 4 mM) was conducted at five different laboratories to verify within- and between-laboratory reproducibilities (WLR and BLR, respectively). In this study, we investigated the WLR and BLR using 14 test chemicals grouped into three classes: (1) eight proficiency substances, (2) four test chemicals that showed false negatives in the ADRA with 1 mM test chemical solution (ADRA, 1 mM), but correctly positive in ADRA (4 mM), and (3) current positive control (phenylacetaldehyde) and a new additional positive control (squaric acid diethyl ester). The results showed 100% reproducibility and 100% accuracy for skin sensitization. Hence, it is clear that the ADRA (4 mM) is an excellent test method in contrast to the currently used ADRA (1 mM). We plan to resubmit the ADRA (4 mM) test method to the OECD Test Guideline Group in the near future so that OECD TG 442C could be revised for the convenience and benefit of many ADRA users.


Subject(s)
Amino Acids/therapeutic use , Animal Testing Alternatives/statistics & numerical data , Biological Assay/statistics & numerical data , Organic Chemicals/toxicity , Skin/drug effects , Laboratories , Reproducibility of Results
7.
Chem Res Toxicol ; 34(7): 1749-1758, 2021 07 19.
Article in English | MEDLINE | ID: mdl-34110798

ABSTRACT

Aldehydes comprise a major portion of skin sensitizers because they can react with both cysteine and lysine. Moreover, cinnamaldehyde (CA) is a typical moderate sensitizer and is often used in an alternative test method for skin sensitization. The amino acid derivative reactivity assay (ADRA) is an in chemico test method that evaluates the reactivity of cysteine derivatives (N-(2-(1-naphthyl)acetyl)-l-cysteine, NAC) and lysine derivatives with the test chemicals and uses CA as a proficiency substance. We found that NAC depletion for CA was only 10-20% when CA was used directly from the reagent bottle, although it increased to almost 100% when stored after being aliquoted from the reagent bottle. It was also found that this was due to the air oxidation of NAC itself rather than the reaction of NAC with CA, indicating that this result simply shows an increase in apparent reactivity. Aldehydes are known to produce active species, such as radicals, during air oxidation. Therefore, we investigated whether radicals were generated under storage conditions using the radical scavenger OH-TEMPO. LC/MS/MS analysis revealed that CA and OH-TEMPO complexes were produced during the air oxidation of CA. In the results of five aldehydes, similar to CA, active species were not generated as significantly as CA. Collectively, during the evaluation of the aldehydes, it can be seen that careful measures need to be taken to prevent the aldehydes from oxidizing during storage, indicating that assessment without preventing air oxidation carries an increased risk of overestimation compared with the intrinsic skin sensitization potency.


Subject(s)
Acrolein/analogs & derivatives , Cysteine/chemistry , Acrolein/chemistry , Animals , Chromatography, High Pressure Liquid/methods , Cyclic N-Oxides/chemistry , Humans , Indicators and Reagents , Oxidation-Reduction , Skin/drug effects , Skin Irritancy Tests/methods , Tandem Mass Spectrometry/methods
8.
J Appl Toxicol ; 41(10): 1634-1648, 2021 10.
Article in English | MEDLINE | ID: mdl-33636015

ABSTRACT

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative to animal testing that focuses on protein binding. The ADRA is a skin sensitization test that solves problems associated with the direct peptide reactivity assay. However, when utilizing the ADRA to evaluate highly hydrophobic substances with octanol/water partition coefficients (logKow) of >6, the test substances may not dissolve in the reaction solution, which can prevent the accurate assessment of skin sensitization. Therefore, we developed the ADRA-organic solvent (ADRA-OS) reaction system, which is a novel skin sensitization test that enables the assessment of highly hydrophobic substances with a logKow of >6. We discovered that the organic solvent ratio, the triethylamine concentration, and the ethylenediaminetetraacetic acid disodium salt dihydrate concentration participate in reactions with the nucleophile N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC) and sensitizers that are used in ADRA and in stabilizing NAC. Thus, we determined the optimal reaction composition of the ADRA-OS according to L9 (33 ) orthogonal array experiments. Using this test, we assessed 14 types of highly hydrophobic substances. When we compared the results with ADRA, we found that ADRA-OS reaction system has high solubility for highly hydrophobic substances and that it has a high predictive capacity (sensitivity: 63%, specificity: 100%, accuracy: 79%). The implication of the results is that the novel ADRA-OS reaction system should provide a useful method for assessing the skin sensitization of highly hydrophobic substances with a logKow of >6.


Subject(s)
Amino Acids/metabolism , Dermatitis, Contact/diagnosis , Hydrophobic and Hydrophilic Interactions , Nitrobenzenes/metabolism , Nitrobenzenes/toxicity , Skin/drug effects , Skin/metabolism , Animal Testing Alternatives/methods , Animals , Biological Assay/methods , Solvents/chemistry
9.
J Appl Toxicol ; 41(2): 303-329, 2021 02.
Article in English | MEDLINE | ID: mdl-33124715

ABSTRACT

The Amino acid Derivative Reactivity Assay (ADRA) is a convenient and effective in chemico test method for assessing covalent binding of test chemicals with protein-derived nucleophilic reagents as a means of predicting skin sensitization potential. Although the original molar-concentration approach to ADRA testing was not suitable for testing multiconstituent substances of an unknown composition, a weight-concentration approach that is suitable for such substances was developed, which also led to the realization that test chemical solutions prepared to molar concentrations higher than the original 1 mM would reduce false negative results as well as enhance predictive capacity. The present study determined an optimal molar-concentration that achieves even higher predictive capacity than the original ADRA. Eight chemicals that were false negatives when tested with 1 mM test chemical solutions were retested with test chemical solutions between 2 and 5 mM, which showed 4 mM to be the optimal molar-concentration for ADRA testing. When 82 chemicals used in the original development were retested with 4 mM test chemical solutions, false negative results were reduced by four. When an additional 85 chemicals used to evaluate the weight-concentration approach to ADRA were retested, the results essentially replicated those obtained with 0.5 mg/ml test chemical solutions and gave 10 fewer false negatives than original ADRA with 1 mM solutions. A comparison of these results for 136 chemicals showed that ADRA testing with 4 mM solutions achieved a four percentage point improvement in accuracy over original ADRA and a two percentage point improvement over DPRA testing.


Subject(s)
Allergens/chemistry , Allergens/toxicity , Amino Acids/analysis , Animal Testing Alternatives , Biological Assay/methods , Dermatitis, Allergic Contact/diagnosis , Skin/drug effects , Animals , Humans , Predictive Value of Tests
10.
J Appl Toxicol ; 40(5): 655-678, 2020 05.
Article in English | MEDLINE | ID: mdl-32128841

ABSTRACT

Photoallergy test of cosmetics and several types of pharmaceutical substances is often necessary for obtaining approval from authorities. However, there are no official test guidelines for photoallergy evaluation. Therefore, we tried to establish a photoallergy test by utilizing an in chemico alternative sensitization method, amino acid derivative reactivity assay (ADRA). To determine the criteria for judging the photoallergy potential, photo-ADRA with or without photoirradiation was performed using 60 photoallergenic chemicals, and cysteine and lysine derivatives were detected using high-performance liquid chromatography either by absorbance or fluorescence measurement. The accuracy of prediction was 81.4% (48 of 59) and 80.0% (48 of 60) using the absorbance and fluorescence methods, respectively. However, as chemicals can breakdown into multiple chemicals during photoirradiation, the absorbance method often cannot perform accurate detection due to co-elution, whereas the fluorescence method can do this due to lack of co-elution. Moreover, all eight chemicals that were found to be negative or false-positive for photoirritation in the 3T3 neutral red uptake phototoxicity test were confirmed as positive for photoallergy using this method. Furthermore, we prepared three types of pseudo-mixtures where we added one photoallergen along with five nonphotoallergens and performed the photo-ADRA by the ultraviolet and fluorescence methods. The result of the fluorescence method was almost the same as that obtained with the use of a single photoallergen and hence the outcome was not affected by the mixture. Thus, this study not only showed a method of evaluating the photoallergy potential of a single chemical but also a mixture, making it useful as an in chemico photoallergy alternative test.


Subject(s)
Amino Acids/chemistry , Animal Testing Alternatives , Cosmetics/toxicity , Dermatitis, Photoallergic/etiology , Irritants/toxicity , Skin Irritancy Tests , Cosmetics/chemistry , Irritants/chemistry , Photochemical Processes , Risk Assessment
11.
J Appl Toxicol ; 40(6): 843-854, 2020 06.
Article in English | MEDLINE | ID: mdl-32052484

ABSTRACT

The amino acid derivative reactivity assay (ADRA), which is an in chemico alternative to the use of animals in testing for skin sensitization potential, offers significant advantages over the direct peptide reactivity assay (DPRA) in that it utilizes nucleophilic reagents that are sensitive enough to be used with test chemical solutions prepared to concentrations of 1 mm, which is one-hundredth that of DPRA. ADRA testing of hydrophobic or other poorly soluble compounds requires that they be dissolved in a solvent consisting of dimethyl sulfoxide (DMSO) and acetonitrile. DMSO is known to promote dimerization by oxidizing thiols, which then form disulfide bonds. We investigated the extent to which DMSO oxidizes the cysteine-derived nucleophilic reagents used in both DPRA and ADRA and found that oxidation of both N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC) and cysteine peptide increases as the concentration of DMSO increases, thereby lowering the concentration of the nucleophilic reagent. We also found that use of a solvent consisting of 5% DMSO in acetonitrile consistently lowered NAC concentrations by about 0.4 µm relative to the use of solvents containing no DMSO. We also tested nine sensitizers and four nonsensitizers having different sensitization potencies to compare NAC depletion with and without 5% DMSO and found that reactivity was about the same with either solvent. Based on the above, we conclude that the use of a solvent containing 5% DMSO has no effect on the accuracy of ADRA test results. We plan to review and propose revisions to OECD Test Guideline 442C based on the above investigation.


Subject(s)
Animal Testing Alternatives , Cysteine/chemistry , Dimethyl Sulfoxide/chemistry , Irritants/toxicity , Skin Irritancy Tests , Solvents/chemistry , Acetonitriles/chemistry , Cysteine/analogs & derivatives , Irritants/chemistry , Oxidation-Reduction , Risk Assessment
12.
J Toxicol Sci ; 44(12): 821-832, 2019.
Article in English | MEDLINE | ID: mdl-31813901

ABSTRACT

The Amino acid Derivative Reactivity Assay (ADRA) is an in chemico alternative to animal testing for the prediction of skin sensitization potential. Although co-elution of test chemicals and nucleophilic reagents during HPLC analysis is sometimes problematic when using the Direct Peptide Reactivity Assay (DPRA), it rarely occurs when using ADRA. Nevertheless, the application of either of these tests to multi-constituent substances requires nucleophilic reagents capable of selective detection. With this issue in mind, the authors developed an ADRA fluorescence detection method (ADRA-FL), which utilizes the natural fluorescence of ADRA nucleophilic reagents. In this study, we demonstrate the efficacy of ADRA-FL by testing 82 test chemicals used in the development of both DPRA and the conventional ADRA (ADRA-UV) as well as establish a threshold value for distinguishing sensitizers and non-sensitizers. Our results show that not only are depletion values obtained using ADRA-FL virtually identical to those obtained using ADRA-UV, the threshold value for either test is 4.9%. Additionally, in order to demonstrate the applicability of ADRA-FL to multi-constituent substances, we prepared test samples that consisted of a set of 10 non-sensitizers combined with one of 10 different sensitizers and tested each using ADRA-FL. The test results were concordant with those obtained using ADRA-UV. Also, because ADRA-FL chromatograms showed a significant decrease in multiple peaks as well as extremely stable baselines, we conclude that ADRA-FL is a highly selective and highly accurate mans of quantifying nucleophilic reagents that is applicable to a wide variety of chemical substances.


Subject(s)
Acetylcysteine/chemistry , Alanine/analogs & derivatives , Animal Testing Alternatives/methods , Dermatitis, Contact/etiology , Fluorometry/methods , Naphthalenes/chemistry , Organic Chemicals , Alanine/chemistry , Models, Theoretical , Organic Chemicals/chemistry , Organic Chemicals/classification , Organic Chemicals/toxicity , Predictive Value of Tests , Quantitative Structure-Activity Relationship , Sensitivity and Specificity
13.
J Toxicol Sci ; 44(9): 585-600, 2019.
Article in English | MEDLINE | ID: mdl-31474740

ABSTRACT

Amino acid derivative reactivity assay (ADRA) has previously been developed as an alternative method to direct peptide reactivity assay (DPRA) to evaluate key event 1 in skin sensitization mechanisms. However, when using alternative methods for skin sensitization, integrated approaches to testing and assessment (IATA) that combine the results of multiple tests evaluating different key events are generally required. To verify whether ADRA can be used in IATA, we replaced DPRA with ADRA in five IATA methods combining DPRA, KeratinoSens, and h-CLAT: (i) the "2 out of 3" approach, (ii) the "3 out of 3" approach, (iii) sequential testing strategy (STS), (iv) integrated testing strategy by scoring approach (ITS-SA), and (v) the "ITS by two methods approach" (ITS-2MA). The prediction accuracy of the "2 out of 3" approach using ADRA (1 mM) and ADRA (0.5 mg/mL) was 90.0% and 91.1%, respectively, for human data, and was very similar to that obtained using DPRA (91.1%). The "3 out of 3" approach also showed good predictability (83.2%) using either ADRA (1 mM) or ADRA (0.5 mg/mL) compared to DPRA. Regarding the accuracy of the prediction of sensitization intensity for the human data by the third classification, prediction accuracy using ADRA was almost the same as STS, ITS-SA, or ITS-2MA using DPRA. As a result, this study showed that ADRA can be used as a test method for key event 1 in the evaluation of skin sensitization by combining multiple alternative methods.


Subject(s)
Amino Acids/immunology , Animal Testing Alternatives/methods , Immunization/methods , Skin/immunology , Cell Line , Humans , U937 Cells
14.
J Pharmacol Toxicol Methods ; 100: 106624, 2019.
Article in English | MEDLINE | ID: mdl-31445998

ABSTRACT

The Amino acid Derivative Reactivity Assay (ADRA) was developed by the authors as an in chemico alternative to animal testing for skin sensitization potential. Although ADRA is based on the same scientific principles as the Direct Peptide Reactivity Assay (DPRA), a comparison of the results from these two test methods shows a far lower incidence of precipitation of test chemicals in reaction solutions for ADRA than for DPRA. Specifically, a comparison of the results for 82 test chemicals that were tested using both DPRA and ADRA showed that while there were 30 chemicals tested using DPRA for which precipitation was found in the reaction solution, there were just three chemicals tested using ADRA for which even slight turbidity was found in the reaction solution. In contrast to the fact that many DPRA test chemicals with a n-Octanol/Water Partition Coefficient (LogKow) of 2.0 or higher exhibited precipitation, there were only three ADRA test chemicals that exhibited turbidity, and these were all highly hydrophobic with a LogKow of greater than 6.0. Moreover, one of the DPRA test chemicals that exhibited precipitation also gave a false negative result, suggesting that anytime a test chemical exhibits precipitation in the reaction solution during DPRA testing the results must be interpreted with the greatest care, although all false positives are not caused by precipitation of test chemicals. Therefore, since relatively few ADRA test chemicals exhibited precipitation relative to DPRA, we consider ADRA to be an extremely useful means of testing a wide variety of chemical substances.


Subject(s)
Amino Acids/chemistry , Chemical Precipitation , Peptides/chemistry , Pharmaceutical Preparations/chemistry , Animal Testing Alternatives/methods , Drug-Related Side Effects and Adverse Reactions/diagnosis , Skin/drug effects
15.
J Appl Toxicol ; 39(11): 1492-1505, 2019 11.
Article in English | MEDLINE | ID: mdl-31313332

ABSTRACT

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative method that focuses on protein binding as the molecular initiating event for skin sensitization. It is a simple and versatile method that has successfully solved some of the problems of the direct peptide reactivity assay (DPRA). The transferability and within- and between-laboratory reproducibility of ADRA were evaluated and confirmed as part of a validation study conducted at four participating laboratories. The transfer of ADRA technology from the lead laboratory to the four participating laboratories was completed successfully during a two-step training program, after which the skin sensitization potentials of 40 coded chemicals were predicted based on the results of ADRA testing. Within-laboratories reproducibility was 100% (10 of 10), 100% (10 of 10), 100% (7 of 7) and 90% (9 of 10), or an average of 97.3% (36 of 37); between-laboratory reproducibility as calculated on the results of three laboratories at the time was 91.9%. The overall predictive capacity comprised an accuracy of 86.9%, sensitivity of 81.5% and specificity of 98.1%. These results satisfied the targets set by the validation management team for demonstrating transferability, within- and between-laboratory reproducibility, and predictive capacity as well as gave a clear indication that ADRA is easily transferable and sufficiently robust to be used in place of DPRA.


Subject(s)
Allergens/toxicity , Amino Acids/chemistry , Animal Testing Alternatives/methods , Laboratories/standards , Skin/drug effects , Allergens/chemistry , Biological Assay , Humans , In Vitro Techniques , Indicators and Reagents , Laboratory Proficiency Testing , Predictive Value of Tests , Reproducibility of Results , Skin/immunology , Solvents/chemistry
16.
Toxicol In Vitro ; 59: 161-178, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31002975

ABSTRACT

The Amino acid Derivative Reactivity Assay (ADRA) is an in chemico alternative to animal testing for skin sensitization potential, in which measurements of multi-constituent solutions were sometimes affected by co-elution with nucleophilic reagents. So, we established a means of using fluorescence detection and verified the utility of a newly developed ADRA-fluorescence detection (ADRA-FL) test method. We tested three types of plant extracts-aloe, green tea, and licorice-and although unable to quantify nucleophilic reagents using ultraviolet detection due to co-elution of multiple components, the use of fluorescence detection enabled us to detect nucleophilic reagents selectively and predict each of the extract solutions to be sensitizers. Given that plant extracts contain immunosuppressants, there is no reason to expect that positive results in ADRA-FL testing will always be concordant with in vivo results. But given its ability to predict the sensitization potential of cosmetics and other widely used multi-constituent substances that had previously been difficult to test, the newly developed ADRA-FL is expected to contribute to future assessments of sensitization risks.


Subject(s)
Biological Assay/methods , Dermatitis, Allergic Contact , Haptens/toxicity , Plant Extracts/toxicity , Aloe , Animal Testing Alternatives , Chromatography, High Pressure Liquid , Fluorescence , Glycyrrhiza , Skin/drug effects , Tea
17.
J Pharmacol Toxicol Methods ; 96: 95-105, 2019.
Article in English | MEDLINE | ID: mdl-30776483

ABSTRACT

The Amino acid Derivative Reactivity Assay (ADRA) is an in chemico alternative to animal testing for skin sensitization potential that uses two different nucleophilic reagents and it is known that ADRA hardly exhibts co-elution compared with the Direct Peptide Reactivity Assay (DPRA) based on the same scientific principles. In this study, we have analyzed the factors underlying why co-elution, which is sometimes an issue during DPRA testing, virtually never occurs during ADRA testing. Chloramine T and dimethyl isophthalate both exhibited co-elution during DPRA testing, but when quantified at both DPRA's 220 nm and ADRA's 281 nm, we found that when the later detection wavelength was used, these test chemicals produced extremely small peaks that did not interfere with quantification of the peptides. And although both salicylic acid and penicillin G exhibited co-elution during DPRA testing, when tested at a concentration just 1% of that used in DPRA, the very broad peak produced at the higher concentration was reduced significantly. However, both these test chemicals exhibited very sharp peaks when the pH of the injection sample was adjusted to be acidic. Based on these results, we were able to clarify that the reasons why nucleophlic reagents hardly co-elute with test chemicals during ADRA testing are depend on the following three major reasons: (1)differences in the detection wavelength, (2)differences in test chemical concentrations in the injection sample, (3)differences in composition of the injection solvent.


Subject(s)
Animal Testing Alternatives/methods , Drug Evaluation, Preclinical/methods , Peptides/chemistry , Chloramines/chemistry , Chromatography, High Pressure Liquid , Indicators and Reagents/chemistry , Salicylic Acid/chemistry , Skin/drug effects , Solvents , Tosyl Compounds/chemistry
18.
J Appl Toxicol ; 39(2): 191-208, 2019 02.
Article in English | MEDLINE | ID: mdl-30221369

ABSTRACT

The amino acid derivative reactivity assay (ADRA) is an in chemico alternative to animal testing for skin sensitization that solves certain problems found in the use of the direct peptide reactivity assay (DPRA). During a recent validation study conducted at multiple laboratories as part of the process to include ADRA in an existing OECD test guideline, one of the nucleophilic reagents used in ADRA-N-(2-(1-naphthyl)acetyl)-l-cysteine (NAC)-was found to be susceptible to oxidation in much the same manner that the cysteine peptide used in DPRA was. Owing to this, we undertook a study to clarify the cause of the promotion of NAC oxidation. In general, cysteine and other chemicals that have thiol groups are known to oxidize in the presence of even minute quantities of metal ions. When metal ions were added to the ADRA reaction solution, Cu2+ promoted NAC oxidation significantly. When 0.25 µm of EDTA was added in the presence of Cu2+ , NAC oxidation was suppressed. Based on this, we predicted that the addition of EDTA to the NAC stock solution would suppress NAC oxidation. Next, we tested 82 chemicals used in developing ADRA to determine whether EDTA affects ADRA's ability to predict sensitization. The results showed that the addition of EDTA has virtually no effect on the reactivity of NAC with a test chemical, yielding an accuracy of 87% for predictions of skin sensitization, which was roughly the same as ADRA.


Subject(s)
Acetylcysteine/chemistry , Animal Testing Alternatives/methods , Biological Assay/methods , Edetic Acid/chemistry , Allergens/administration & dosage , Allergens/chemistry , Allergens/toxicity , Animals , Copper/chemistry , Ferric Compounds/chemistry , Models, Chemical , Oxidation-Reduction , Skin/drug effects , Skin/metabolism
19.
J Pharmacol Toxicol Methods ; 88(Pt 1): 92-99, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28807796

ABSTRACT

INTRODUCTION: Various cytotoxicity assays measuring indicators such as enzyme activity, dye uptake, or cellular ATP content are often performed using 96-well microplates. However, recent reports show that cytotoxicity assays such as the ATP assay and MTS assay underestimate cytotoxicity when compounds such as anti-cancer drugs or mutagens induce cell hypertrophy whilst increasing intracellular ATP content. Therefore, we attempted to evaluate the reliability of a high-content image analysis (HCIA) assay to count cell number in a 96-well microplate automatically without using a cell-number indicator. METHODS: We compared cytotoxicity results of 25 compounds obtained from ATP, WST-8, Alamar blue, and HCIA assays with those directly measured using an automatic cell counter, and repeating individual experiments thrice. RESULTS: The number of compounds showing low correlation in cell viability measured using cytotoxicity assays compared to automatic cell counting (r2<0.8, at least 2 of 3 experiments) were follows: ATP assay; 7; WST-8 assay, 2; Alamar blue assay, 3; HCIA cytotoxicity assay, 0. Compounds for which correlation was poor in 3 assays, except the HCIA assay, induced an increase in nuclear and cell size. However, correlation between cell viability measured by automatic cell counter and the HCIA assay was strong regardless of nuclear and cell size. Additionally, correlation coefficients between IC50 values obtained from automatic cell counter and from cytotoxicity assays were as follows: ATP assay, 0.80; WST-8 assay, 0.84; Alamar blue assay, 0.84; and HCIA assay, 0.98. DISCUSSION: From the above, we showed that the HCIA cytotoxicity assay produces similar data to the automatic cell counter and is highly accurate in measuring cytotoxicity.


Subject(s)
Biological Assay/methods , Cell Count/methods , Cell Survival/drug effects , Image Processing, Computer-Assisted/methods , Toxicity Tests/methods , Adenosine Triphosphate/analysis , Animals , Biological Assay/instrumentation , Cell Line , Cricetulus , Humans , Indicators and Reagents/chemistry , Optical Imaging/methods , Oxazines/chemistry , Pharmacological Phenomena , Reproducibility of Results , Software , Tetrazolium Salts/chemistry , Toxicity Tests/instrumentation , Xanthenes/chemistry
20.
J Toxicol Sci ; 42(2): 205-221, 2017.
Article in English | MEDLINE | ID: mdl-28321047

ABSTRACT

The ATP assay is a highly sensitive and versatile method for measuring cytotoxicity. However, the correlation between the cell viability results obtained using the ATP assay and those obtained using direct cell counting has not been widely reported. Therefore, to evaluate the reliability and limitations of the ATP assay, we compared the results of ATP assay with those of automatic cell counter, which can measure the number and diameter of cells directly, by using 24 compounds and repeating individual experiments thrice. The correlation between the data was low for 7 of the 24 compounds (r2 < 0.8, at least 2 out of 3 experiments). These were the top 7 of the 11 compounds that induced cell hypertrophy. These 7 compounds were also observed to increase the area of mitochondria. However, the last 4 of the 11 compounds increased the cell size but did not increase the mitochondrial area. For the remaining 13 compounds, which had no effect on cell size, a good correlation was observed between the results of the two methods (r2 > 0.8, at least 2 out of 3 experiments), and the cell size was effectively the same as that of the controls. We concluded that the poor correlation between the two methods was attributable to an increase in the content of intracellular ATP because of the chemically induced cell and mitochondrial hypertrophy. We showed that the ATP assay is unsuitable for assessing the cytotoxicity of compounds that induce cell hypertrophy with increase in the mitochondrial area and ATP content.


Subject(s)
Adenosine Triphosphate/metabolism , Cell Survival/drug effects , Hypertrophy/chemically induced , Animals , Biological Assay , Carcinogens/toxicity , Cell Count , Cell Line , Cricetulus , Cytotoxins/toxicity , Mitochondria/drug effects , Mutagens/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...