Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 124(43): 9615-9624, 2020 10 29.
Article in English | MEDLINE | ID: mdl-33079541

ABSTRACT

Microwave heating is widely used to accelerate the organic synthesis reaction. However, the role of the nonthermal microwave effect in the chemical reaction has not yet been well characterized. The microwave heating processes of an ethanol-hexane mixed solution were investigated using in situ microwave irradiation nuclear magnetic resonance spectroscopy and molecular dynamics (MD) simulation. The temperature of the solution under microwave irradiation was estimated from the temperature dependence of the 1H chemical shifts (chemical shift calibrated (CSC)-temperature). The CSC-temperature increased to 58 °C for CH2 and CH3 protons, while it increased to 42 °C for OH protons during microwave irradiation. The CSC-temperature of CH2 and CH3 protons reflects the bulk temperature of solution by the thermal microwave effect. The lower CSC-temperature of the OH proton can be attributed to a nonthermal microwave effect. MD simulation revealed that electron dipole moments of OH groups ordered along the oscillated electric field decreased the entropy by absorbing microwave energy and simultaneously increased the entropy by dissipating energy to the solution as the thermal and nonthermal microwave effect. Ordered polar molecules interact to increase hydrogen bonds between OH groups as the nonthermal microwave effect, which explains the lower CSC-temperature of the OH protons. The nonthermal microwave effects contribute to the intrinsic acceleration of the organic reaction.

2.
J Magn Reson ; 255: 28-33, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25898399

ABSTRACT

The single-crystal rotation technique was applied to magnetically oriented microcrystal arrays (MOMAs) of cellobiose (monoclinic) to determine the principal values and principal axes of the chemical shift tensors of C1 and C1' carbons. Rotations were performed about the magnetic χ1, χ2, and χ3 axes of MOMA, and the measurements were taken at six different orientations with respect to the applied magnetic field. Under these rotations, crowded peaks were reduced and the peaks for the C1 and C1' carbons were identified by comparing with simulation results. Six components of the chemical shift tensor expressed with respect to the magnetic χ1χ2χ3-frame were determined. The tensors thus obtained were transformed into those relative to the molecular frame.

3.
Phys Chem Chem Phys ; 17(14): 9082-9, 2015 Apr 14.
Article in English | MEDLINE | ID: mdl-25752926

ABSTRACT

Microwave heating effects are widely used in the acceleration of organic, polymerization and enzymatic reactions. These effects are primarily caused by the local heating induced by microwave irradiation. However, the detailed molecular mechanisms associated with microwave heating effects on the chemical reactions are not yet well understood. This study investigated the microwave heating effect of N-(4-methoxybenzylidene)-4-butylaniline (MBBA) in liquid crystalline and isotropic phases using in situ microwave irradiation nuclear magnetic resonance (NMR) spectroscopy, by obtaining (1)H NMR spectra of MBBA under microwave irradiation. When heated simply using the temperature control unit of the NMR instrument, the liquid crystalline MBBA was converted to the isotropic phase exactly at its phase transition temperature (Tc) of 41 °C. The application of microwave irradiation at 130 W for 90 s while maintaining the instrument temperature at 20 °C generated a small amount of isotropic phase within the bulk liquid crystal. The sample temperature of the liquid crystalline state obtained during microwave irradiation was estimated to be 35 °C by assessing the linewidths of the (1)H NMR spectrum. This partial transition to the isotropic phase can be attributed to a non-equilibrium local heating state induced by the microwave irradiation. The application of microwave at 195 W for 5 min to isotropic MBBA while maintaining an instrument temperature of 50 °C raised the sample temperature to 160 °C. In this study, the MBBA temperature during microwave irradiation was estimated by measuring the temperature dependent chemical shifts of individual protons in the sample, and the different protons were found to indicate significantly different temperatures in the molecule. These results suggest that microwave heating polarizes bonds in polar functional groups, and this effect may partly explain the attendant acceleration of organic reactions.


Subject(s)
Benzylidene Compounds/chemistry , Liquid Crystals , Magnetic Resonance Spectroscopy/methods , Microwaves , Phase Transition , Heating , Protons , Temperature
4.
J Magn Reson ; 254: 27-34, 2015 May.
Article in English | MEDLINE | ID: mdl-25771526

ABSTRACT

Microwave heating is widely used to accelerate organic reactions and enhance the activity of enzymes. However, the detailed molecular mechanism for the effect of microwave on chemical reactions is not yet fully understood. To investigate the effects of microwave heating on organic compounds, we have developed an in situ microwave irradiation NMR spectroscopy. (1)H NMR spectra of 1-(4'-cyanophenyl)-4-propylcyclohexane (PCH3) in the liquid crystalline and isotropic phases were observed under microwave irradiation. When the temperature was regulated at slightly higher than the phase transition temperature (Tc=45 °C) under a gas flow temperature control system, liquid crystalline phase mostly changed to the isotropic phase. Under microwave irradiation and with the gas flow temperature maintained at 20 °C, which is 25 °C below the Tc, the isotropic phase appeared stationary as an approximately 2% fraction in the liquid crystalline phase. The temperature of the liquid crystalline state was estimated to be 38 °C according to the line width, which is at least 7 °C lower than the Tc. The temperature of this isotropic phase should be higher than 45 °C, which is considered to be a non-equilibrium local heating state induced by microwave irradiation. Microwaves at a power of 195 W were irradiated to the isotropic phase of PCH3 at 50 °C and after 2 min, the temperature reached 220 °C. The temperature of PCH3 under microwave irradiation was estimated by measurement of the chemical shift changes of individual protons in the molecule. These results demonstrate that microwave heating generates very high temperature within a short time using an in situ microwave irradiation NMR spectrometer.


Subject(s)
Cyclohexanes/radiation effects , Magnetic Resonance Spectroscopy/methods , Microwaves , Nitriles/radiation effects , Hot Temperature , Liquid Crystals , Temperature
5.
Rev Sci Instrum ; 83(10): 105110, 2012 Oct.
Article in English | MEDLINE | ID: mdl-23126807

ABSTRACT

Achieving a higher magnetic field is important for solid-state nuclear magnetic resonance (NMR). But a conventional low temperature superconducting (LTS) magnet cannot exceed 1 GHz (23.5 T) due to the critical magnetic field. Thus, we started a project to replace the Nb(3)Sn innermost coil of an existing 920 MHz NMR (21.6 T) with a Bi-2223 high temperature superconducting (HTS) innermost coil. Unfortunately, the HTS magnet cannot be operated in persistent current mode; an external dc power supply is required to operate the NMR magnet, causing magnetic field fluctuations. These fluctuations can be stabilized by a field-frequency lock system based on an external NMR detection coil. We demonstrate here such a field-frequency lock system in a 500 MHz LTS NMR magnet operated in an external current mode. The system uses a (7)Li sample in a microcoil as external NMR detection system. The required field compensation is calculated from the frequency of the FID as measured with a frequency counter. The system detects the FID signal, determining the FID frequency, and calculates the required compensation coil current to stabilize the sample magnetic field. The magnetic field was stabilized at 0.05 ppm∕3 h for magnetic field fluctuations of around 10 ppm. This method is especially effective for a magnet with large magnetic field fluctuations. The magnetic field of the compensation coil is relatively inhomogeneous in these cases and the inhomogeneity of the compensation coil can be taken into account.

6.
J Magn Reson ; 184(2): 258-62, 2007 Feb.
Article in English | MEDLINE | ID: mdl-17123849

ABSTRACT

A method for compensating effect of field fluctuation is examined to attain high-resolution NMR spectra with resistive and hybrid magnets. In this method, time dependence of electromotive force induced for a pickup coil attached near a sample is measured synchronously with acquisition of NMR. Observed voltage across the pickup coil is converted to field fluctuation data, which is used to deconvolute NMR signals. The feasibility of the method is studied by (79)Br MAS NMR of KBr under a 30T magnetic field of a hybrid magnet. Twenty single-scan NMR signals were accumulated after the manipulation, resulting in a high-resolution NMR spectrum.


Subject(s)
Algorithms , Magnetic Resonance Spectroscopy/instrumentation , Magnetic Resonance Spectroscopy/methods , Magnetics/instrumentation , Signal Processing, Computer-Assisted , Transducers , Electric Impedance , Electromagnetic Fields , Equipment Design , Equipment Failure Analysis , Regression Analysis , Sensitivity and Specificity
7.
J Magn Reson ; 156(2): 318-21, 2002 Jun.
Article in English | MEDLINE | ID: mdl-12165269

ABSTRACT

We have developed a 920-MHz NMR system and performed the proton NMR measurement of H(2)O and ethylbenzene using the superconducting magnet operating at 21.6 T (920 MHz for proton), which is the highest field produced by a superconducting NMR magnet in the persistent mode. From the NMR measurements, it is verified that both homogeneity and stability of the magnet have a specification sufficient for a high resolution NMR.

SELECTION OF CITATIONS
SEARCH DETAIL
...