Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 213: 112355, 2022 May.
Article in English | MEDLINE | ID: mdl-35158220

ABSTRACT

A new hybrid organic-inorganic silsesquioxane material, 3-n-propyl(2-amino-4-methyl)pyridium chloride (SiAMPy+Cl-), was synthesized and successfully applied for the synthesis of stable nanoconjugates with gold nanoparticles (AuNPs-SiAMPy+). SiAMPy+Cl- was obtained through a simple sol-gel procedure by using chloropropyltrimetoxysilane and tetraethylorthosilicate as precursors and 2-amino-4-methylpyridine as the functionalizing agent. The resulting material was characterized by employing FTIR, XRD, and 1H-, 13C-, and 29Si-NMR spectroscopy. The synthesis of AuNPs-SiAMPy+ nanoconjugates was optimized through a 23 full factorial design. UV-VIS, FTIR, TEM, DLS, and ζ-potential measurements were used to characterize the nanoconjugates, which presented a spherical morphology with an average diameter of 5.8 nm. To investigate the existence of toxic effects of AuNPs-SiAMPy+ on blood cells, which is essential for their future biomedical applications, toxicity assays on human erythrocytes and leukocytes were performed. Interestingly, no cytotoxic effects were observed for both types of cells. The nanoconjugates were further applied in the construction of electrochemical immunosensing devices, aiming the detection of anti-Trypanosoma cruzi antibodies in serum as biomarkers of Chagas disease. The AuNPs-SiAMPy+ significantly enhanced the sensitivity of the biodevice, which was able to discriminate between anti-T. cruzi positive and negative serum samples. Thus, the AuNPs-SiAMPy+-based biosensor showed great potential to be used as a new tool to perform fast and accurate diagnosis of Chagas disease. The promising findings described herein strongly confirm the remarkable potential of SiAMPy+Cl- to obtain nanomaterials, which can present notable biomedical properties and applications.


Subject(s)
Biosensing Techniques , Chagas Disease , Metal Nanoparticles , Gold/chemistry , Humans , Metal Nanoparticles/chemistry , Nanoconjugates/chemistry
2.
Article in English | MEDLINE | ID: mdl-32163004

ABSTRACT

This study aimed to synthesize Bi2Fe4O9 and apply it to the degradation of tartrazine yellow dye. Bi2Fe4O9 was synthesized using the solid-state reaction and the Pechini method. The materials obtained were characterized using X-ray diffraction (XRD), visible ultraviolet spectroscopy (UV-Vis) and field emission scanning electron microscopy (FEG). The microscopic images revealed a morphological difference between the two materials in which the material obtained by the Pechini method is the most porous and have the largest surface area. The pellet obtained by the Pechini method was seen to have a lower bandgap value when compared with the sample solid state reaction. In the photocatalysis tests, the best performance was also that of the material obtained by the Pechini method, with 99.34% degradation, while the material obtained by solid state reaction showed 85.86% in 120 minutes. The solution degraded with the material obtained by the Pechini method presented 81.66% of mineralization while the solution with the material obtained by solid state reaction showed 60.97% of mineralization. The results confirmed that the material obtained by both syntheses is able to maintain its effectiveness after 10 repetitions of the photocatalytic process, proving to be promising for waste treatment in the industrial field.


Subject(s)
Bismuth/chemistry , Coloring Agents/analysis , Ferric Compounds/chemistry , Tartrazine/analysis , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Water Purification/methods , Catalysis , Ferric Compounds/chemical synthesis , Microscopy, Electron, Scanning , X-Ray Diffraction
3.
Biosens Bioelectron ; 141: 111351, 2019 Sep 15.
Article in English | MEDLINE | ID: mdl-31176113

ABSTRACT

Zika virus (ZIKV) has recently become a global health challenge due to its rapid geographical expansion, since it is associated with serious neurological anomalies such as Guillain-Barré syndrome and microcephaly. Currently, the techniques for ZIKV diagnosis require labor-intensive, expensive and lengthy tests using sophisticated equipment. Moreover, false-positive or false-negative results can occur. In the present work, a DNA biosensor to detect ZIKV in real human serum samples was developed using an oxidized glassy carbon electrode (ox-GCE) modified with silsesquioxane-functionalized gold nanoparticles (AuNPs-SiPy). This nanohybrid was characterized by UV-Vis, FTIR and Raman spectroscopies, DLS, and XRD. The conditions for the immobilization of a ZIKV ssDNA probe on the electrode surface (ox-GCE-[AuNPs-SiPy]) were optimized by univariate and multivariate analysis. The optimized biosensor was characterized by CV, EIS and AFM experiments. The ZIKV target recognition was based on the variation of the charge transfer resistance (ΔRct) of the redox marker ([Fe(CN)6]3-/4-) used and the roughness (Rq) of the electrode surface. The proposed biosensor presented a LOD of 0.82 pmol L-1, with a linear range of 1.0 x10-12 - 1.0 x10-6 mol L-1. Moreover, the reported device showed a suitable stability and satisfactory sensitivity and selectivity to quantify ZIKV in human serum samples, which suggests its promising clinical applications for the early diagnosis of ZIKV-associated pathologies.


Subject(s)
Biosensing Techniques/methods , Gold/chemistry , Immobilized Nucleic Acids/chemistry , Metal Nanoparticles/chemistry , Zika Virus Infection/blood , Zika Virus/isolation & purification , DNA, Single-Stranded/chemistry , Electrodes , Humans , Limit of Detection , Organosilicon Compounds/chemistry , Zika Virus Infection/virology
4.
Environ Sci Pollut Res Int ; 24(7): 6143-6150, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27178295

ABSTRACT

This study presents an attempt to solve two serious environmental problems: the generation of toxic effluents and solid waste disposal. The work proposes recycling cigarette filters with the purpose of degrading reactive dyes, which are used in the textile industry. Filters of smuggled cigarettes were recycled through Fe3+ immobilization on their surface. The material obtained was characterized through Fourier transform infrared spectroscopy (FTIR), atomic absorption spectroscopy (AAS), scanning electron microscopy-energy-dispersive spectroscopy (SEM-EDS), and ultraviolet-visible spectroscopy (UV-vis). The factorial design revealed that the most suitable conditions for the degradation of Reactive Black 5 dye were obtained by using 1 g of material at pH 3.0 in a 100 mg L-1 hydrogen peroxide solution. The material showed excellent performance in the Reactive Black 5 dye degradation process; in 60 min, 99.09 % dye was removed. At pH 7.0, the dye degradation was 72.67 %, indicating that the material prepared can be used at pH values greater than 3.0 without the occurrence of hydrated Fe3+ oxide precipitation. Furthermore, the material showed no loss of catalytic activity after three degradation studies.


Subject(s)
Filtration/methods , Naphthalenesulfonates , Water Pollutants, Chemical , Water Purification/methods , Ferric Compounds/chemistry , Industrial Waste , Naphthalenesulfonates/analysis , Naphthalenesulfonates/chemistry , Naphthalenesulfonates/isolation & purification , Water Pollutants, Chemical/analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification
5.
Environ Technol ; 37(13): 1664-75, 2016.
Article in English | MEDLINE | ID: mdl-26675986

ABSTRACT

In this study, the Reactive Black 5 dye degradation and textile effluent were investigated using the photo-Fenton process employing immobilized Fe(3+) in acetate cellulose films. The films prepared were characterized through Fourier transform infrared spectroscopy, atomic absorption spectroscopy, scanning electron microscopy - energy-dispersive spectroscopy and ultraviolet visible spectroscopy. The factorial design revealed that the best conditions for the Reactive Black 5 dye degradation were obtained using the film containing 5% Fe (w/w), 100 mg L(-1) H2O2 and pH 4.0. In studies using artificial light, the dye degradation was 99.29% and the chemical oxygen demand (COD) reduction was 90% after 45 min of treatment. In the process assisted by sunlight, the degradation was 86% and the COD reduction was 70% considering the same time of treatment. At pH 6.0 and artificial light, the dye degradation was 98.90% and the COD reduction was 78%, indicating that the material prepared can be used at pH values greater than 3 without the occurrence of hydrated ferric oxides precipitation. It was also observed that the material can be reused seven consecutive times without substantial loss of efficacy in dye degradation. Furthermore, the proposed material reduces the COD of a textile effluent by 72% after 300 min of treatment.


Subject(s)
Cellulose/analogs & derivatives , Naphthalenesulfonates/analysis , Waste Disposal, Fluid/methods , Wastewater/chemistry , Water Pollutants, Chemical/analysis , Biological Oxygen Demand Analysis , Cellulose/chemistry , Hydrogen Peroxide , Industrial Waste , Iron , Naphthalenesulfonates/chemistry , Sunlight , Textiles , Water Pollutants, Chemical/chemistry
6.
Environ Sci Pollut Res Int ; 22(2): 894-902, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25065479

ABSTRACT

The mixed material clay/Fe was prepared and immobilized on glass slides and calcined at 550 and 750 °C. The calcined material X-ray powder pattern (XRD) diffractograms indicate that there is no intercalation of iron compounds inside the lamella clay. The experimental design revealed that the most suitable phenol degradation conditions were obtained using the material calcined at 750 °C in a pH 7 and 140 mg/L of hydrogen peroxide solution. The material MMAFe750 showed excellent performance as a catalyst for Fenton-like reaction; in 125 min, 50 % of phenol was removed in the absence of leaching-supported iron. These results indicate that the reaction occurs by a heterogeneous process. Furthermore, the material showed no loss of catalytic activity after five degradation studies. It was noted that the adsorption of phenol in the synthesized materials does not occur and the mixed material is strongly adsorbed onto glass slides.


Subject(s)
Aluminum Silicates/chemistry , Iron/chemistry , Phenol/chemistry , Clay , Glass , Oxidation-Reduction , Phenol/analysis , Water Purification
7.
J Nanosci Nanotechnol ; 11(4): 3499-508, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21776730

ABSTRACT

Nanostructured films comprising a 3-n-propylpyridinium silsesquioxane polymer (designated as SiPy+Cl-) and copper (II) tetrasulfophthalocyanine (CuTsPc) were produced using the Layer-by-Layer technique (LbL). To our knowledge this is the first report on the use of silsesquioxane derivative polymers as building blocks for nanostructured thin films fabrication. Deposition of the multilayers were monitored by UV-Vis spectroscopy revealing the linear increment in the absorbance of the Q-band from CuTsPc at 617 nm with the number of SiPy+Cl-/CuTsPc or CuTsPc/SiPy+Cl-bilayers. FTIR analyses showed that specific interactions between SiPy+Cl- and CuTsPc occurred between SO3- groups of tetrasulfophthalocyanine and the pyridinium groups of the polycation. Morphological studies were carried out using the AFM technique, which showed that the roughness and thickness of the films increase with the number of bilayers. The films displayed electroactivity and were employed to detection of dopamine (DA) and ascorbic acid (AA) using cyclic voltammetry, at concentrations ranging from 1.96 x 10(-4) to 1.31 x 10(-3) molL(-1). The number and the sequence of bilayers deposition influenced the electrochemical response in presence of DA and AA. Using differential pulse technique, films comprising SiPy+/-/CuTsPc were able to distinguish between DA and ascorbic acid (AA), with a potential difference of approximately with 500 mV, in the concentration range of 9.0 x 10(-5) to 2.0 x 10(-4) molL(-1), in pH 3.0.


Subject(s)
Biosensing Techniques/instrumentation , Conductometry/instrumentation , Electrodes , Nanotechnology/instrumentation , Neurotransmitter Agents/analysis , Organosilicon Compounds/chemistry , Equipment Design , Equipment Failure Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...