Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(12)2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38928297

ABSTRACT

Senescence is a physiological and pathological cellular program triggered by various types of cellular stress. Senescent cells exhibit multiple characteristic changes. Among them, the characteristic flattened and enlarged morphology exhibited in senescent cells is observed regardless of the stimuli causing the senescence. Several studies have provided important insights into pro-adhesive properties of cellular senescence, suggesting that cell adhesion to the extracellular matrix (ECM), which is involved in characteristic morphological changes, may play pivotal roles in cellular senescence. Matricellular proteins, a group of structurally unrelated ECM molecules that are secreted into the extracellular environment, have the unique ability to control cell adhesion to the ECM by binding to cell adhesion receptors, including integrins. Recent reports have certified that matricellular proteins are closely involved in cellular senescence. Through this biological function, matricellular proteins are thought to play important roles in the pathogenesis of age-related diseases, including fibrosis, osteoarthritis, intervertebral disc degeneration, atherosclerosis, and cancer. This review outlines recent studies on the role of matricellular proteins in inducing cellular senescence. We highlight the role of integrin-mediated signaling in inducing cellular senescence and provide new therapeutic options for age-related diseases targeting matricellular proteins and integrins.


Subject(s)
Aging , Cellular Senescence , Extracellular Matrix Proteins , Integrins , Humans , Integrins/metabolism , Extracellular Matrix Proteins/metabolism , Animals , Aging/metabolism , Extracellular Matrix/metabolism , Signal Transduction , Neoplasms/metabolism , Neoplasms/pathology , Neoplasms/drug therapy , Osteoarthritis/metabolism , Osteoarthritis/pathology , Fibrosis , Cell Adhesion , Atherosclerosis/metabolism , Atherosclerosis/pathology , Intervertebral Disc Degeneration/metabolism , Intervertebral Disc Degeneration/pathology , Molecular Targeted Therapy
2.
Int J Mol Sci ; 25(3)2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38339104

ABSTRACT

One of the extracellular matrix proteins, tenascin-C (TN-C), is known to be upregulated in age-related inflammatory diseases such as cancer and cardiovascular diseases. Expression of this molecule is frequently detected, especially in the macrophage-rich areas of atherosclerotic lesions; however, the role of TN-C in mechanisms underlying the progression of atherosclerosis remains obscure. Previously, we found a hidden bioactive sequence termed TNIIIA2 in the TN-C molecule and reported that the exposure of this sequence would be carried out through limited digestion of TN-C by inflammatory proteases. Thus, we hypothesized that some pro-atherosclerotic phenotypes might be elicited from macrophages when they were stimulated by TNIIIA2. In this study, TNIIIA2 showed the ability to accelerate intracellular lipid accumulation in macrophages. In this experimental condition, an elevation of phagocytic activity was observed, accompanied by a decrease in the expression of transporters responsible for lipid efflux. All these observations were mediated through the induction of excessive ß1-integrin activation, which is a characteristic property of the TNIIIA2 sequence. Finally, we demonstrated that the injection of a drug that targets TNIIIA2's bioactivity could rescue mice from atherosclerotic plaque expansion. From these observations, it was shown that TN-C works as a pro-atherosclerotic molecule through an internal TNIIIA2 sequence. The possible advantages of clinical strategies targeting TNIIIA2 are also indicated.


Subject(s)
Atherosclerosis , Foam Cells , Plaque, Atherosclerotic , Animals , Mice , Extracellular Matrix Proteins , Fibronectins/metabolism , Foam Cells/metabolism , Lipids , Peptides/chemistry , Tenascin/metabolism
3.
Am J Cancer Res ; 11(9): 4364-4379, 2021.
Article in English | MEDLINE | ID: mdl-34659892

ABSTRACT

Tenascin-C is upregulated during inflammation and tumorigenesis, and its expression level is correlated with a poor prognosis in several malignancies. Nevertheless, the substantial role of tenascin-C in cancer progression is poorly understood. Previously, we found that a peptide derived from tenascin-C, termed TNIIIA2, acts directly on tumor cells to activate ß1-integrin and induce malignant progression. Here, we show that ß1-integrin activation by TNIIIA2 in human fibroblasts indirectly contributes to cancer progression through the induction of cellular senescence. Prolonged treatment of fibroblasts with TNIIIA2 induced cellular senescence, as characterized by the suppression of cell growth and the induction of senescence-associated-ß-galactosidase and p16INK4a expression. The production of reactive oxygen species and subsequent DNA damage were responsible for the TNIIIA2-induced senescence of fibroblasts. Interestingly, peptide FNIII14, which inactivates ß1-integrin, inhibited fibroblast senescence induced not only by TNIIIA2 but also by H2O2, suggesting that ß1-integrin activation plays a critical role in the induction of senescence in fibroblasts. Moreover, TNIIIA2-induced senescent fibroblasts secreted heparin-binding epidermal growth factor-like growth factor (HB-EGF), which caused preneoplastic epithelial HaCaT cells to acquire malignant properties, including colony-forming and focus-forming abilities. Thus, our study demonstrates that tenascin-C-derived peptide TNIIIA2 induces cellular senescence in fibroblasts through ß1-integrin activation, causing cancer progression via the secretion of humoral factors such as HB-EGF.

4.
World J Gastrointest Oncol ; 13(9): 980-994, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34616507

ABSTRACT

Tenascin-C (TNC) is an adhesion modulatory protein present in the extracellular matrix that is highly expressed in several malignancies, including colon cancer. Although TNC is considered a negative prognostic factor for cancer patients, the substantial role of the TNC molecule in colorectal carcinogenesis and its malignant progression is poorly understood. We previously found that TNC has a cryptic functional site and that a TNC peptide containing this site, termed TNIIIA2, can potently and persistently activate beta1-integrins. In contrast, the peptide FNIII14, which contains a cryptic bioactive site within the fibronectin molecule, can inactivate beta1-integrins. This review presents the role of TNC in the development of colitis-associated colorectal cancer and in the malignant progression of colon cancer, particularly the major involvement of its cryptic functional site TNIIIA2. We propose new possible prophylactic and therapeutic strategies based on inhibition of the TNIIIA2-induced beta1-integrin activation by peptide FNIII14.

5.
Biochem Biophys Res Commun ; 536: 14-19, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33360093

ABSTRACT

Glioblastoma multiforme (GBM), the most common brain tumor in adults, has an extremely poor prognosis, which is attributed to the aggressive properties of GBM cells, such as dysregulated proliferation and disseminative migration. We recently found that peptide TNIIIA2, derived from tenascin-C (TNC), which is highly expressed in GBM, contributes to the acquisition of these aggressive properties through ß1-integrin activation. In general, cancer cells often acquire an additional malignant property that confers resistance to apoptosis due to loss of adhesion to the extracellular matrix, termed anoikis resistance. Our present results show that regulation of ß1-integrin activation also plays a key role in both the development and loss of anoikis resistance in GBM cells. Despite being derived from a GBM with an extremely poor prognosis, the human GBM cell line T98G was susceptible to anoikis but became anoikis resistant via treatment with peptide TNIIIA2, which is able to activate ß1-integrin. The TNIIIA2-conferred anoikis resistance of T98G cells was disrupted by further addition of peptide FNIII14, which has the ability to inactivate ß1-integrin. Moreover, anchorage-independent survival of GBM cells in suspension culture was abrogated by peptide FNIII14, but not by RGD and CS-1 peptides, which are antagonistic for integrins α5ß1, αvß3, and α4ß1. These results suggest that GBM cells develop anoikis resistance through activation of ß1-integrin by TNC-derived peptide TNIIIA2, which is abundantly released into the tumor microenvironment of GBM. Inactivation of ß1-integrin may provide a promising strategy to overcome the apoptosis resistance of cancer cells, including GBM.


Subject(s)
Anoikis , Integrin beta1/metabolism , Peptides/pharmacology , Tenascin/chemistry , Cell Adhesion/drug effects , Cell Line, Tumor , Cell Survival/drug effects , Fibronectins/chemistry , Humans
6.
Cartilage ; 13(2_suppl): 1367S-1375S, 2021 12.
Article in English | MEDLINE | ID: mdl-32204600

ABSTRACT

OBJECTIVE: TNIIIA2 is a peptide of the extracellular matrix glycoprotein tenascin-C. We evaluated whether intra-articular injection of TNIIIA2 could prevent articular cartilage degeneration without inducing synovitis in an osteoarthritis mice model. DESIGN: Ten micrograms per milliliter of TNIIIA2 were injected into the knee joint of mice (group II) to evaluate the induction of synovitis. The control group received an injection of phosphate buffered saline (group I). Synovitis was evaluated using synovitis score 2 and 4 weeks after injection. The ligaments of knee joints of mice were transected to make the osteoarthritis model. After transection, 10 µg/mL of TNIIIA2 was injected into the knee joint (group IV). The control group received an injection of phosphate buffered saline after transection (group III). Histologic examinations were made using hematoxylin and eosin and safranin-O staining at 2, 4, 8, and 12 weeks postoperatively. An in vitro study was also performed to determine the mechanism by which TNIIIA2 prevents cartilage degeneration. Human chondrocytes were isolated, cultured, and treated with TNIIIA2. The expressions of various mRNAs, including inflammatory cytokines, and anabolic and catabolic factors for cartilage were compared using real-time polymerase chain reaction. RESULTS: There were no differences between groups in the study of intra-articular injection of mice (group I vs. group II). In the osteoarthritis model, we found development of osteoarthritis was suppressed in group IV at 4 and 8 weeks. TNIIIA2 upregulated the expressions of tumor necrosis factor-α, matrix metalloproteinase 3, and basic fibroblast growth factor. CONCLUSION: We demonstrated that TNIIIA2 could prevent cartilage degeneration without synovitis.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Animals , Cartilage Diseases/pathology , Cartilage, Articular/pathology , Extracellular Matrix/metabolism , Mice , Peptides/pharmacology , Tenascin
7.
Am J Cancer Res ; 10(11): 3990-4004, 2020.
Article in English | MEDLINE | ID: mdl-33294281

ABSTRACT

Cell migration is a highly coordinated process that involves not only integrin-mediated adhesion but also de-adhesion. We previously found that a cryptic de-adhesive site within fibronectin molecule, termed FNIII14, weakens cell adhesion to the extracellular matrix by inactivating ß1-integrins. Surprisingly, eukaryotic translation elongation factor-1A (eEF1A), an essential factor during protein biosynthesis, was identified as a membrane receptor that mediates the de-adhesive effect of FNIII14. Here, we demonstrate that FNIII14-mediated de-adhesion causes enhanced migration and invasion in two types of highly invasive/metastatic cancer cells, resulting in the initiation of metastasis. Both in vitro migration and invasion of highly invasive human melanoma cell line, Mum2B, were inhibited by a matrix metalloproteinase (MMP)-2/9 inhibitor or a function-blocking antibody against FNIII14 (anti-FNIII14 Ab), suggesting that MMP-mediated exposure of the cryptic de-adhesive site FNIII14 was responsible for Mum2B cell migration and invasion. The MMP-induced FNIII14 exposure was also shown to be functional in the migration and invasion of highly metastatic mouse breast cancer cell line 4T1. Overexpression and knockdown experiments of eEF1A in Mum2B cells revealed that the migration and invasion were dependent on the membrane levels of eEF1A. In vivo experiments using tumor xenograft mouse models derived from Mum2B and 4T1 cell lines showed that the anti-FNIII14 Ab has a significant anti-metastatic effect. Thus, these results provide novel insights into the regulation of cancer cell migration and invasion and suggest promising targets for anti-metastasis strategies.

8.
Front Immunol ; 11: 610096, 2020.
Article in English | MEDLINE | ID: mdl-33362799

ABSTRACT

Tenascin (TN)-C is highly expressed specifically in the lesions of inflammation-related diseases, including tumors. The expression level of TN-C in tumors and the tumor stroma is positively correlated with poor prognosis. However, no drugs targeting TN-C are currently clinically available, partly because the role of TN-C in tumor progression remains controversial. TN-C harbors an alternative splicing site in its fibronectin type III repeat domain, and its splicing variants including the type III-A2 domain are frequently detected in malignant tumors. We previously identified a biologically active region termed TNIIIA2 in the fibronectin type III-A2 domain of TN-C molecule and showed that this region is involved in promoting firm and persistent cell adhesion to fibronectin. In the past decade, through the exposure of various cell lines to peptides containing the TNIIIA2 region, we have published reports demonstrating the ability of the TNIIIA2 region to modulate distinct cellular activities, including survival/growth, migration, and invasion. Recently, we reported that the signals derived from TNIIIA2-mediated ß1 integrin activation might play a crucial role for inducing malignant behavior of glioblastoma (GBM). GBM cells exposed to the TNIIIA2 region showed not only exacerbation of PDGF-dependent proliferation, but also acceleration of disseminative migration. On the other hand, we also found that the pro-inflammatory phenotypic changes were promoted when macrophages are stimulated with TNIIIA2 region in relatively low concentration and resulting MMP-9 upregulation is needed to release of the TNIIIA2 region from TN-C molecule. With the contribution of TNIIIA2-stimulated macrophages, the positive feedback spiral loop, which consists of the expression of TN-C, PDGF, and ß1 integrin, and TNIIIA2 release, seemed to be activated in GBM with aggressive malignancy. Actually, the growth of transplanted GBM grafts in mice was significantly suppressed via the attenuation of ß1 integrin activation. In this review, we thus introduce that the TNIIIA2 region has a significant impact on malignant progression of tumors by regulating cell adhesion. Importantly, it has been demonstrated that the TNIIIA2 region exerts unique biological functions through the extremely strong activation of ß1-integrins and their long-lasting duration. These findings prompt us to develop new therapeutic agents targeting the TNIIIA2 region.


Subject(s)
Brain Neoplasms/metabolism , Cell Adhesion , Fibronectins/metabolism , Glioblastoma/metabolism , Stromal Cells/metabolism , Tenascin/metabolism , Animals , Antineoplastic Agents/therapeutic use , Brain Neoplasms/drug therapy , Brain Neoplasms/pathology , Cell Adhesion/drug effects , Cell Movement , Cell Proliferation , Drug Resistance, Neoplasm , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Neoplasm Invasiveness , Phenotype , Protein Interaction Domains and Motifs , Signal Transduction , Stromal Cells/pathology , Tumor Microenvironment , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/pathology
9.
Molecules ; 25(14)2020 Jul 16.
Article in English | MEDLINE | ID: mdl-32708610

ABSTRACT

Matricellular proteins, which exist in association with the extracellular matrix (ECM) and ECM protein molecules, harbor functional sites within their molecular structures. These functional sites are released through proteolytic cleavage by inflammatory proteinases, such as matrix metalloproteinases (MMPs) and a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS), and the peptides containing these functional sites have unique biological activities that are often not detected in the parent molecules. We previously showed that tenascin-C (TNC) and plasma fibronectin (pFN), examples of matricellular proteins, have cryptic bioactive sites that have opposite effects on cell adhesion to the ECM. A peptide containing the bioactive site of TNC, termed TNIIIA2, which is highly released at sites of inflammation and in the tumor microenvironment (TME), has the ability to potently and persistently activate ß1-integrins. In the opposite manner, the peptide FNIII14 containing the bioactive site of pFN has the ability to inactivate ß1-integrins. This review highlights that peptide TNIIIA2 can act as a procancer factor and peptide FNIII14 can act as an anticancer agent, based on the regulation on ß1-integrin activation. Notably, the detrimental effects of TNIIIA2 can be inhibited by FNIII14. These findings open the possibility for new therapeutic strategies based on the inactivation of ß1-integrin by FNIII14.


Subject(s)
Integrins/genetics , Neoplasms/drug therapy , Peptides/therapeutic use , Tenascin/genetics , Antineoplastic Agents/therapeutic use , Fibronectins/genetics , Fibronectins/therapeutic use , Humans , Integrins/antagonists & inhibitors , Neoplasms/pathology , Peptides/genetics
10.
J Toxicol Pathol ; 33(2): 121-129, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32425345

ABSTRACT

Spontaneously Diabetic Torii (SDT) rats are a well-known animal model of non-obese type 2 diabetes mellitus. Although this animal model has been studied extensively over the last decade, the incidence rates of Leydig cell hyperplasia and tumors in this model have not been reported. In this study, pathophysiological analyses of the testes were performed on male SDT rats, to understand the effect of insulin treatment on the development of Leydig cell hyperplasia and tumors and the expression of integrins and extracellular matrix proteins. Testicular Leydig cell hyperplasia and tumors were observed in SDT rats at 64 weeks of age but were rarely identified in Sprague-Dawley (SD) rats of the same age. Insulin treatment decreased plasma glucose and HbA1c levels, and interestingly, decreased the number of hyperplastic Leydig cell foci and Leydig cell tumors in treated animals. A similar reduction in the expression of Ki67 in these Leydig cell foci was also observed. In addition, insulin treatment decreased the expression of integrin α5, integrin ß1, integrin αvß3, fibronectin, and vitronectin in hyperplastic Leydig cell foci. These results suggest that insulin might decrease the incidence of Leydig cell hyperplasia by reducing Leydig cell proliferation and the expression of integrins and extracellular matrix proteins through the reduction of serum glucose concentrations in these animals.

12.
Oncotarget ; 10(48): 4960-4972, 2019 Aug 13.
Article in English | MEDLINE | ID: mdl-31452837

ABSTRACT

The MYC family oncogenes (MYC, MYCN, and MYCL) contribute to the genesis of many human cancers. Among them, amplification of the MYCN gene and over-expression of N-Myc protein are the most reliable risk factors in neuroblastoma patients. On the other hand, we previously found that a peptide derived from fibronectin, termed FNIII14, is capable of inducing functional inactivation in ß1-integrins. Here, we demonstrate that inactivation of ß1-integrin by FNIII14 induced proteasomal degradation in N-Myc of neuroblastoma cells with MYCN amplification. This N-Myc degradation by FNIII14 reduced the malignant properties, including the anchorage-independent proliferation and invasive migration, of neuroblastoma cells. An in vivo experiment using a mouse xenograft model showed that the administration of FNIII14 can inhibit tumor growth, and concomitantly a remarkable decrease in N-Myc levels in tumor tissues. Of note, the activation of proteasomal degradation based on ß1-integrin inactivation is applicable to another Myc family oncoprotein, c-myc, which also reverses cancer-associated properties in pancreatic cancer cells. Collectively, ß1-integrin inactivation could be a new chemotherapeutic strategy for cancers with highly expressed Myc. FNIII14, which is a unique pharmacological agent able to induce ß1-integrin inactivation, may be a promising drug targeting Myc oncoproteins for cancer chemotherapy.

13.
Biochem Biophys Res Commun ; 518(2): 311-318, 2019 10 15.
Article in English | MEDLINE | ID: mdl-31427086

ABSTRACT

TAp63 is an isoform of p63 gene, a p53 family gene that suppresses tumorigenesis via transcriptional regulation. TAp63 represses transcription of MYC oncogene in glioblastomas; however, its role in another MYC family gene, MYCN, has remained elusive. In this study, we showed that TAp63 repressed transcription of the MYCN gene in human cancer cells. Overexpression of TAp63 in HeLa cells suppressed MYCN expression, whereas knockdown of TAp63 had the opposite effect. By binding to exon 1 of MYCN gene, TAp63 suppressed the promoter activities of MYCN and its cis-antisense gene, NCYM. Other p53 family members, p53 and TAp73, showed lesser ability to suppress MYCN/NCYM promoter activities compared with that of TAp63. All-trans-retinoic acid (ATRA) treatment of MYCN/NCYM-amplified neuroblastoma CHP134 cells induced TAp63 and reduced p53 expressions, accompanied by downregulation of MYCN/NCYM expressions. Meanwhile, TAp63 knockdown inhibited ATRA-induced repression of NCYM gene expression. Blocking the p53 family binding sites by CRISPR-dCas9 system in CHP134 cells induced MYCN/NCYM expression and promoted apoptotic cell death. Expression levels of TAp63 mRNA inversely correlated with those of MYCN/NCYM expression in primary neuroblastomas, which was associated with a favorable prognosis. Collectively, TAp63 repressed MYCN/NCYM bidirectional transcription, contributing to the suppression of neuroblastoma growth.


Subject(s)
N-Myc Proto-Oncogene Protein/genetics , Neoplasm Proteins/genetics , Neuroblastoma/genetics , Transcription Factors/genetics , Tumor Suppressor Proteins/genetics , Cell Proliferation/genetics , Humans , Neuroblastoma/metabolism , Neuroblastoma/pathology , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/metabolism , Transcription, Genetic/genetics , Tumor Suppressor Proteins/metabolism
14.
Anticancer Res ; 39(7): 3487-3492, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31262872

ABSTRACT

BACKGROUND/AIM: Despite intensive chemotherapy, the survival rates for high-risk neuroblastoma, most of which have MYCN amplification, remain low. Overexpression of N-myc oncoprotein promotes expression of cancer-associated properties. We recently found that combination of all-trans retinoic acid (ATRA) with the ß1-integrin-activating peptide TNIIIA2 attenuated cancer-associated properties of neuroblastoma cells through N-Myc degradation. However, ATRA has serious side-effects and there are concerns about late adverse effects. The aim of this study was to examine the effects of the combination of acyclic retinoid (ACR) with TNIIIA2 on neuroblastoma. MATERIALS AND METHODS: The effects of ACR and TNIIIA2 were examined by neuroblastoma cell proliferation and survival assays as well as by using a neuroblastoma xenograft model. The levels of N-Myc and cancer-associated malignant properties were assayed by western blot and colony formation assay, respectively. RESULTS: Combining ACR, which is clinically safe, with TNIIIA2 induced proteasomal degradation of N-Myc and reduction of neuroblastoma cell malignant properties. An in vivo experiment showed therapeutic potential. CONCLUSION: ACR-TNIIIA2 combination treatment may be efficacious and clinical safe chemotherapy for high-risk neuroblastoma.


Subject(s)
Antineoplastic Agents/therapeutic use , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/drug therapy , Peptides/therapeutic use , Tenascin/therapeutic use , Tretinoin/analogs & derivatives , Animals , Antineoplastic Agents/pharmacology , Cell Proliferation/drug effects , Mice, Inbred BALB C , Mice, Nude , Neuroblastoma/metabolism , Neuroblastoma/pathology , Peptides/pharmacology , Phenotype , Tenascin/pharmacology , Tretinoin/pharmacology , Tretinoin/therapeutic use , Tumor Burden/drug effects
15.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261783

ABSTRACT

Expression level of tenascin-C is closely correlated to poor prognosis in glioblastoma patients, while the substantial role of tenascin-C responsible for aggressive progression in glioblastoma cells has not been clarified. We previously found that peptide TNIIIA2, which is derived from the tumor-associated tenascin-C variants, has the ability to promote cell adhesion by activating ß1-integrins. Our recent study demonstrated that potentiated activation of integrin α5ß1 by TNIIIA2 causes not only a dysregulated proliferation in a platelet-derived growth factor (PDGF)-dependent manner, but also disseminative migration in glioblastoma cells. Here, we show that TNIIIA2 enhances the proliferation in glioblastoma cells expressing PDGF-receptorß, even without exogenous PDGF. Mechanistically, TNIIIA2 induced upregulated expression of PDGF, which in turn stimulated the expression of tenascin-C, a parental molecule of TNIIIA2. Moreover, in glioblastoma cells and rat brain-derived fibroblasts, tenascin-C upregulated matrix metalloproteinase-2, which has the potential to release TNIIIA2 from tenascin-C. Thus, it was shown that autocrine production of PDGF triggered by TNIIIA2 functions to continuously generate a functional amount of PDGF through a positive spiral loop, which might contribute to hyper-proliferation in glioblastoma cells. TNIIIA2 also enhanced in vitro disseminative migration of glioblastoma cells via the PKCα signaling. Collectively, the tenascin-C/TNIIIA2 could be a potential therapeutic target for glioblastoma.


Subject(s)
Autocrine Communication , Brain Neoplasms/metabolism , Cell Proliferation , Glioblastoma/metabolism , Platelet-Derived Growth Factor/metabolism , Tenascin/metabolism , Animals , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Movement , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/physiology , Glioblastoma/pathology , Humans , Male , Matrix Metalloproteinase 2/metabolism , Mice , Neurons/drug effects , Neurons/metabolism , Neurons/physiology , Peptide Fragments/chemistry , Peptide Fragments/pharmacology , Rats , Rats, Wistar , Receptors, Platelet-Derived Growth Factor/metabolism , Tenascin/chemistry
16.
Mol Cancer Ther ; 18(9): 1649-1658, 2019 09.
Article in English | MEDLINE | ID: mdl-31189613

ABSTRACT

Tenascin-C is a member of the matricellular protein family, and its expression level is correlated to poor prognosis in cancer, including glioblastoma, whereas its substantial role in tumor formation and malignant progression remains controversial. We reported previously that peptide TNIIIA2 derived from the cancer-associated alternative splicing domain of tenascin-C molecule has an ability to activate ß1-integrin strongly and to maintain it for a long time. Here, we demonstrate that ß1-integrin activation by TNIIIA2 causes acquisition of aggressive behavior, dysregulated proliferation, and migration, characteristic of glioblastoma cells. TNIIIA2 hyperstimulated the platelet-derived growth factor-dependent cell survival and proliferation in an anchorage-independent as well as -dependent manner in glioblastoma cells. TNIIIA2 also strongly promoted glioblastoma multiforme cell migration, which was accompanied by an epithelial-mesenchymal transition-like morphologic change on the fibronectin substrate. Notably, acquisition of these aggressive properties by TNIIIA2 in glioblastoma cells was abrogated by peptide FNIII14 that is capable of inducing inactivation in ß1-integrin activation. Moreover, FNIII14 significantly inhibited tumor growth in a mouse xenograft glioblastoma model. More importantly, FNIII14 sensitized glioblastoma cells to temozolomide via downregulation of O6-methylguanine-DNA methyltransferase expression. Consequently, FNIII14 augmented the antitumor activity of temozolomide in a mouse xenograft glioblastoma model. Taken altogether, the present study provides not only an interpretation for the critical role of tenascin-C/TNIIIA2 in aggressive behavior of glioblastoma cells, but also an important strategy for glioblastoma chemotherapy. Inhibition of the tenascin-C/ß1-integrin axis may be a therapeutic target for glioblastoma, and peptide FNIII14 may represent a new approach for glioblastoma chemotherapy. SIGNIFICANCE: These findings provide a proposal of new strategy for glioblastoma chemotherapy based on integrin inactivation.


Subject(s)
Glioblastoma/metabolism , Integrin alpha5beta1/metabolism , Peptides/pharmacology , Tenascin/chemistry , Xenograft Model Antitumor Assays , Animals , Antineoplastic Agents, Alkylating/pharmacology , Cell Line, Tumor , Cell Movement/drug effects , Cell Proliferation/drug effects , Cell Survival/drug effects , Disease Progression , Female , Fibronectins/chemistry , Fibronectins/metabolism , Glioblastoma/drug therapy , Glioblastoma/pathology , Humans , Mice, Inbred BALB C , Mice, Nude , Rats , Temozolomide/pharmacology , Tenascin/metabolism
17.
Int J Mol Sci ; 20(11)2019 Jun 05.
Article in English | MEDLINE | ID: mdl-31195598

ABSTRACT

Inflammatory bowel diseases increase the risk of colorectal cancer and colitis-associated colorectal cancer (CAC). Tenascin-C, a matricellular protein, is highly expressed in inflammatory bowel diseases, especially colorectal cancer. However, the role of tenascin-C in the development of CAC is not yet fully understood. We previously showed that a peptide derived from tenascin-C, peptide TNIIIA2, induces potent and sustained activation of ß1-integrin. Moreover, we recently reported that peptide TNIIIA2 promotes invasion and metastasis in colon cancer cells. Here, we show the pathological relevance of TNIIIA2-related functional site for the development of CAC. First, expression of the TNIIIA2-containing TNC peptides/fragments was detected in dysplastic lesions of an azoxymethane/dextran sodium sulfate (AOM/DSS) mouse model. In vitro experiments demonstrated that conditioned medium from peptide TNIIIA2-stimulated human WI-38 fibroblasts induced malignant transformation in preneoplastic epithelial HaCaT cells. Indeed, these pro-proliferative effects stimulated by peptide TNIIIA2 were abrogated by peptide FNIII14, which has the ability to inactivate ß1-integrin. Importantly, peptide FNIII14 was capable of suppressing polyp formation in the AOM/DSS model. Therefore, tenascin-C-derived peptide TNIIIA2 may contribute to the formation of CAC via activation of stromal fibroblasts based on ß1-integrin activation. Peptide FNIII14 could represent a potential prophylactic treatment for CAC.


Subject(s)
Colitis/complications , Colorectal Neoplasms/etiology , Colorectal Neoplasms/pathology , Disease Progression , Fibroblasts/metabolism , Integrin beta1/metabolism , Peptides/metabolism , Tenascin/metabolism , Animals , Azoxymethane , Caco-2 Cells , Cell Proliferation , Colonic Polyps/pathology , Culture Media, Conditioned/pharmacology , Dextran Sulfate , Disease Models, Animal , Epithelial Cells/metabolism , Epithelial Cells/pathology , Fibroblasts/pathology , Humans , Male , Mice, Inbred ICR , Paracrine Communication
18.
Am J Cancer Res ; 9(2): 434-448, 2019.
Article in English | MEDLINE | ID: mdl-30906641

ABSTRACT

Neuroblastoma is one of the common solid tumors of childhood. Nearly half of neuroblastoma patients are classified into the high-risk group, and their 5-year event-free survival (EFS) rates remain unsatisfactory in the range of 30-40%. High-risk neuroblastoma is characterized by amplification of the MYCN gene and excessive expression of its protein product, N-Myc. Because N-Myc is a transcription factor for various pro-proliferative proteins, the excessive expression causes aberrant or blocked neuronal differentiation during development of sympathetic nervous system, which is a central aspect of neuroblastoma genesis. The current main treatment for high-risk neuroblastoma is intensive chemotherapy using anti-cancer drugs that induce apoptosis in tumor cells, but intensive chemotherapy has another serious risk of long-lasting side effects, so-called "late effects", that occur many years after chemotherapy has ended. As a solution for such situation, differentiation therapy has been expected as a mild chemotherapy with a low risk of late effects, and an application of retinoic acid (RA) and its derivatives as treatment for high-risk neuroblastoma has long been attempted. However, the clinical outcome has not been sufficient with the use of retinoids, including all-trans retinoic acid (ATRA), mainly because of the inhibition of differentiation caused by N-Myc. In the present study, we succeeded in synergistically accelerating the ATRA-induced neuronal differentiation of MYCN-amplified neuroblastoma cells by combining a peptide derived from tenascin-C, termed TNIIIA2, which has a potent ability to activate ß1-integrins. Accelerated differentiation was caused by a decrease in N-Myc protein level in neuroblastoma cells after the combined treatment of TNIIIA2 with ATRA. That is, combination treatment using ATRA with TNIIIA2 induced proteasomal degradation in the N-Myc oncoprotein of neuroblastoma cells with MYCN gene amplification, and this caused acceleration of neuronal differentiation and attenuation of malignant properties. Furthermore, an in vivo experiment using a xenograft mouse model showed a therapeutic potential of the combination administration of ATRA and TNIIIA2 for high-risk neuroblastoma. These results provide a new insight into differentiation therapy for high-risk neuroblastoma based on N-Myc protein degradation.

19.
Biochem Biophys Res Commun ; 496(3): 934-940, 2018 02 12.
Article in English | MEDLINE | ID: mdl-29366788

ABSTRACT

Ulcerative colitis (UC) is an inflammatory disease of the colon. IL1R2, which encodes IL-1 receptor type 2 (IL-1R2), was reported as a risk gene for UC. To elucidate the roles of IL-1R2 in the development of colitis, we examined the development of dextran sodium sulfate-induced colitis, a mouse model for UC using Il1r2-/- mice. We found the severity score of colitis was milder in Il1r2-/- mice compared with wild-type (WT) mice when they were housed separately, however the severity score was similar when they were housed in a cage. In the separate housing condition, relative contents of Actinobacteria and Bacilli in feces of Il1r2-/- mice were lower than that of WT mice. Furthermore, IL-1ß induced the expression of antimicrobial peptides (AMPs) from colon. Thus, we show that IL-1R2 is harmful for the development of colitis, because IL-1R2 promotes the growth of proinflammatory intestinal microbiota by suppressing IL-1ß-induced AMP production.


Subject(s)
Antimicrobial Cationic Peptides/immunology , Colitis/immunology , Gastrointestinal Microbiome/immunology , Receptors, Interleukin-1/immunology , Animals , Colitis/chemically induced , Colitis/pathology , Dextran Sulfate , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Receptors, Interleukin-1/genetics
20.
Drug Discov Ther ; 11(5): 253-258, 2017 Nov 22.
Article in English | MEDLINE | ID: mdl-29021505

ABSTRACT

Various generic transdermal formulations of tulobuterol containing rubber and acrylate base polymers are commercially available in Japan. However, none of the formulations have been compared directly with respect to the skin permeability of tulobuterol and to their follow ability. Tulobuterol Tape Sawai of rubber base and Tulobuterol Tape NP of acrylate base were used to conduct the in vitro 24-hour skin permeability test of tulobuterol at receiver solution temperatures of 32°C, 37°C, and 40°C. Furthermore, the followability of these tapes were examined by measuring the depth of the pores that were formed in their adhesive layer. Consequently, the maximum flux of tulobuterol was greater for Tulobuterol Tape NP. Arrhenius plot analysis revealed that Tulobuterol Tape Sawai was more sensitive to skin surface temperature compared with Tulobuterol Tape NP. Skin abrasion had a greater effect on the skin permeability of tulobuterol in Tulobuterol Tape Sawai than in Tulobuterol Tape NP. Followability was greater for Tulobuterol Tape NP than for Tulobuterol Tape Sawai. These results suggest that a transdermal formulation of acrylate base is preferable to that with a rubber base when skin surface temperature varies or when the skin is abraded. In clinical settings, therefore, a formulation of acrylate base is preferable to a formulation of rubber base when skin surface temperature varies or when the skin is abraded. The formulation needs to be applied to the skin of less asperity for the achievement of better transdermal absorption of tulobuterol.


Subject(s)
Adrenergic beta-Agonists/pharmacokinetics , Skin/metabolism , Terbutaline/analogs & derivatives , Transdermal Patch , Acrylates , Administration, Cutaneous , Adrenergic beta-Agonists/administration & dosage , Animals , Drugs, Generic , In Vitro Techniques , Japan , Male , Mice , Mice, Hairless , Permeability , Polymers , Rubber , Skin Absorption , Terbutaline/administration & dosage , Terbutaline/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL
...