Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 205: 49-56, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31234102

ABSTRACT

Time resolution is one of the most severe limitations of scanning probe microscopies (SPMs), since the typical image acquisition times are in the order of several seconds or even few minutes. As a consequence, the characterization of dynamical processes occurring at surfaces (e.g. surface diffusion, film growth, self-assembly and chemical reactions) cannot be thoroughly addressed by conventional SPMs. To overcome this limitation, several years ago we developed a first prototype of the FAST module, an add-on instrument capable of driving a commercial scanning tunneling microscope (STM) at and beyond video rate frequencies. Here we report on a fully redesigned version of the FAST module, featuring improved performance and user experience, which can be used both with STMs and atomic force microscopes (AFMs), and offers additional capabilities such as an atom tracking mode. All the new features of the FAST module, including portability between different commercial instruments, are described in detail and practically demonstrated.

2.
Nano Lett ; 12(11): 5907-12, 2012 Nov 14.
Article in English | MEDLINE | ID: mdl-23057656

ABSTRACT

Soft-landing of size-selected Pd(n) (n ≤ 20) nanoclusters on a Moiré-patterned surface of graphene adsorbed on Ru(0001) leads to controlled formation of a truly monodisperse cluster-assembled material. Combined scanning tunneling microscopy and first-principles calculations allow identification of selective adsorption sites, characterization of size-dependent cluster isomers, and exploration of interconversion processes between isomeric forms that manifestly influence cluster surface mobility. Surface-assembled cluster superstructures may be employed in nanocatalytic applications, as well as in fundamental investigations of physical factors controlling bonding, structure, isomerism, and surface mobilities of surface-supported clusters.

SELECTION OF CITATIONS
SEARCH DETAIL
...