Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 4610, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38816417

ABSTRACT

NLR family proteins act as intracellular receptors. Gene duplication amplifies the number of NLR genes, and subsequent mutations occasionally provide modifications to the second gene that benefits immunity. However, evolutionary processes after gene duplication and functional relationships between duplicated NLRs remain largely unclear. Here, we report that the rice NLR protein Pit1 is associated with its paralogue Pit2. The two are required for the resistance to rice blast fungus but have different functions: Pit1 induces cell death, while Pit2 competitively suppresses Pit1-mediated cell death. During evolution, the suppression of Pit1 by Pit2 was probably generated through positive selection on two fate-determining residues in the NB-ARC domain of Pit2, which account for functional differences between Pit1 and Pit2. Consequently, Pit2 lost its plasma membrane localization but acquired a new function to interfere with Pit1 in the cytosol. These findings illuminate the evolutionary trajectory of tandemly duplicated NLR genes after gene duplication.


Subject(s)
Gene Duplication , NLR Proteins , Oryza , Plant Proteins , NLR Proteins/genetics , NLR Proteins/metabolism , Oryza/genetics , Oryza/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Evolution, Molecular , Plant Diseases/microbiology , Plant Diseases/genetics , Plant Diseases/immunology , Disease Resistance/genetics , Cell Death , Phylogeny , Gene Expression Regulation, Plant
2.
Plant Physiol ; 195(2): 1333-1346, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38446745

ABSTRACT

Transposable elements (TEs) contribute to plant evolution, development, and adaptation to environmental changes, but the regulatory mechanisms are largely unknown. RNA-directed DNA methylation (RdDM) is 1 TE regulatory mechanism in plants. Here, we identified that novel ARGONAUTE 1 (AGO1)-binding Tudor domain proteins Precocious dissociation of sisters C/E (PDS5C/E) are involved in 24-nt siRNA production to establish RdDM on TEs in Arabidopsis thaliana. PDS5 family proteins are subunits of the eukaryote-conserved cohesin complex. However, the double mutant lacking angiosperm-specific subfamily PDS5C and PDS5E (pds5c/e) exhibited different developmental phenotypes and transcriptome compared with those of the double mutant lacking eukaryote-conserved subfamily PDS5A and PDS5B (pds5a/b), suggesting that the angiosperm-specific PDS5C/E subfamily has a unique function in angiosperm plants. Proteome and imaging analyses revealed that PDS5C/E interact with AGO1. The pds5c/e double mutant had defects in 24-nt siRNA accumulation and CHH DNA methylation on TEs. In addition, some lncRNAs that accumulated in the pds5c/e mutant were targeted by AGO1-loading 21-nt miRNAs and 21-nt siRNAs. These results indicate that PDS5C/E and AGO1 participate in 24-nt siRNA production for RdDM in the cytoplasm. These findings indicate that angiosperm plants evolved a new regulator, the PDS5C/E subfamily, to control the increase in TEs during angiosperm evolution.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Argonaute Proteins , DNA Methylation , RNA, Small Interfering , DNA Methylation/genetics , Argonaute Proteins/metabolism , Argonaute Proteins/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Arabidopsis/metabolism , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Gene Expression Regulation, Plant , Tudor Domain/genetics , DNA Transposable Elements/genetics , RNA, Plant/genetics , RNA, Plant/metabolism , Mutation/genetics
3.
Plant Sci ; 336: 111840, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37619867

ABSTRACT

In plants, the 2-hydroxy fatty acids (HFAs) of sphingolipids are important for plant growth and stress responses. Although the synthetic pathway of HFAs is well understood, their degradation has not yet been elucidated. In Saccharomyces cerevisiae, Mpo1 has been identified as a dioxygenase that degrades HFAs. This study examined the functions of two homologs of yeast Mpo1, MHP1 and MHL, in Arabidopsis thaliana. The mhp1 and mhp1mhl mutants showed a dwarf phenotype compared to that of the wild type. Lipid analysis of the mutants revealed the involvement of MHP1 and MHL in synthesizing odd-chain fatty acids (OCFAs), possibly by the degradation of HFAs. OCFAs are present in trace amounts in plants; however, their physiological significance is largely unknown. RNA sequence analysis of the mhp1mhl mutant revealed that growth-related genes decreased, whereas genes involved in stress response increased. Additionally, the mhp1mhl mutant had increased expression of defense-related genes and increased resistance to infection by Pseudomonas syringae pv. tomato DC3000 (Pto), and Pto carrying the effector AvrRpt2. Phytohormone analysis demonstrated that jasmonic acid in mhp1mhl was higher than that in the wild type. These results indicate that MHP1 and MHL are involved in synthesizing OCFAs and immunity in Arabidopsis.

4.
Plant J ; 115(4): 1071-1083, 2023 08.
Article in English | MEDLINE | ID: mdl-37177878

ABSTRACT

The depletion of cellular zinc (Zn) adversely affects plant growth. Plants have adaptation mechanisms for Zn-deficient conditions, inhibiting growth through the action of transcription factors and metal transporters. We previously identified three defensin-like (DEFL) proteins (DEFL203, DEFL206 and DEFL208) that were induced in Arabidopsis thaliana roots under Zn-depleted conditions. DEFLs are small cysteine-rich peptides involved in defense responses, development and excess metal stress in plants. However, the functions of DEFLs in the Zn-deficiency response are largely unknown. Here, phylogenetic tree analysis revealed that seven DEFLs (DEFL202-DEFL208) were categorized into one subgroup. Among the seven DEFLs, the transcripts of five (not DEFL204 and DEFL205) were upregulated by Zn deficiency, consistent with the presence of cis-elements for basic-region leucine-zipper 19 (bZIP19) or bZIP23 in their promoter regions. Microscopic observation of GFP-tagged DEFL203 showed that DEFL203-sGFP was localized to the apoplast and plasma membrane. Whereas a single mutation of the DEFL202 or DEFL203 genes only slightly affected root growth, defl202 defl203 double mutants showed enhanced root growth under all growth conditions. We also showed that the size of the root meristem was increased in the double mutants compared with the wild type. Our results suggest that DEFL202 and DEFL203 are redundantly involved in the inhibition of root growth under Zn-deficient conditions through a reduction in root meristem length and cell number.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Phylogeny , Zinc/metabolism , Metals/metabolism , Plants/metabolism , Defensins/genetics , Defensins/metabolism , Gene Expression Regulation, Plant , Plant Roots/genetics , Plant Roots/metabolism
5.
Curr Biol ; 33(10): 2008-2023.e8, 2023 05 22.
Article in English | MEDLINE | ID: mdl-37146609

ABSTRACT

The exporter of the auxin precursor indole-3-butyric acid (IBA), ABCG36/PDR8/PEN3, from the model plant Arabidopsis has recently been proposed to also function in the transport of the phytoalexin camalexin. Based on these bonafide substrates, it has been suggested that ABCG36 functions at the interface between growth and defense. Here, we provide evidence that ABCG36 catalyzes the direct, ATP-dependent export of camalexin across the plasma membrane. We identify the leucine-rich repeat receptor kinase, QIAN SHOU KINASE1 (QSK1), as a functional kinase that physically interacts with and phosphorylates ABCG36. Phosphorylation of ABCG36 by QSK1 unilaterally represses IBA export, allowing camalexin export by ABCG36 conferring pathogen resistance. As a consequence, phospho-dead mutants of ABCG36, as well as qsk1 and abcg36 alleles, are hypersensitive to infection with the root pathogen Fusarium oxysporum, caused by elevated fungal progression. Our findings indicate a direct regulatory circuit between a receptor kinase and an ABC transporter that functions to control transporter substrate preference during plant growth and defense balance decisions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , ATP-Binding Cassette Transporters/metabolism , Arabidopsis/metabolism , Thiazoles/metabolism , Phytoalexins , Arabidopsis Proteins/metabolism , Plant Diseases/microbiology , Gene Expression Regulation, Plant
6.
Plant Biotechnol (Tokyo) ; 40(1): 93-98, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-38439935

ABSTRACT

Nitrogen (N) availability is one of the most important factors regulating plant metabolism and growth as it affects global gene expression profiles. Dynamic changes in chromatin structure, including histone modifications and nucleosome assembly/disassembly, have been extensively shown to regulate gene expression under various environmental stresses in plants. However, the involvement of chromatin related changes in plant nutrient responses has been demonstrated only in a few studies to date. In this study, we investigated the function of histone chaperone NUCLEOSOME ASSEMBLY PROTEIN1 (NAP1) proteins under N deficient conditions in Arabidopsis. In the nap1;1 nap1;2 nap1;3 triple mutant (m123-1), the expression of N-responsive marker genes and growth of lateral roots were decreased under N deficient conditions. In addition, the m123-1 plants showed a delay in N deficiency-induced leaf senescence. Taken together, these results suggest that NAP1s affect plant growth under N deficient conditions in Arabidopsis.

8.
Plant J ; 111(1): 205-216, 2022 07.
Article in English | MEDLINE | ID: mdl-35476214

ABSTRACT

Plant cells alter the intracellular positions of chloroplasts to ensure efficient photosynthesis, a process controlled by the blue light receptor phototropin. Chloroplasts migrate toward weak light (accumulation response) and move away from excess light (avoidance response). Chloroplasts are encircled by the endoplasmic reticulum (ER), which forms a complex network throughout the cytoplasm. To ensure rapid chloroplast relocation, the ER must alter its structure in conjunction with chloroplast relocation movement, but little is known about the underlying mechanism. Here, we searched for interactors of phototropin in the liverwort Marchantia polymorpha and identified a RETICULON (RTN) family protein; RTN proteins play central roles in ER tubule formation and ER network maintenance by stabilizing the curvature of ER membranes in eukaryotic cells. Marchantia polymorpha RTN1 (MpRTN1) is localized to ER tubules and the rims of ER sheets, which is consistent with the localization of RTNs in other plants and heterotrophs. The Mprtn1 mutant showed an increased ER tubule diameter, pointing to a role for MpRTN1 in ER membrane constriction. Furthermore, Mprtn1 showed a delayed chloroplast avoidance response but a normal chloroplast accumulation response. The live cell imaging of ER dynamics revealed that ER restructuring was impaired in Mprtn1 during the chloroplast avoidance response. These results suggest that during the chloroplast avoidance response, MpRTN1 restructures the ER network and facilitates chloroplast movement via an interaction with phototropin. Our findings provide evidence that plant cells respond to fluctuating environmental conditions by controlling the movements of multiple organelles in a synchronized manner.


Subject(s)
Marchantia , Chloroplasts/metabolism , Endoplasmic Reticulum/metabolism , Light , Marchantia/physiology , Phototropins/metabolism
9.
Plant Physiol ; 189(2): 839-857, 2022 06 01.
Article in English | MEDLINE | ID: mdl-35312013

ABSTRACT

Plant sphingolipids mostly possess 2-hydroxy fatty acids (HFA), the synthesis of which is catalyzed by FA 2-hydroxylases (FAHs). In Arabidopsis (Arabidopsis thaliana), two FAHs (FAH1 and FAH2) have been identified. However, the functions of FAHs and sphingolipids with HFAs (2-hydroxy sphingolipids) are still unknown because of the lack of Arabidopsis lines with the complete deletion of FAH1. In this study, we generated a FAH1 mutant (fah1c) using CRISPR/Cas9-based genome editing. Sphingolipid analysis of fah1c, fah2, and fah1cfah2 mutants revealed that FAH1 hydroxylates very long-chain FAs (VLCFAs), whereas the substrates of FAH2 are VLCFAs and palmitic acid. However, 2-hydroxy sphingolipids are not completely lost in the fah1cfah2 double mutant, suggesting the existence of other enzymes catalyzing the hydroxylation of sphingolipid FAs. Plasma membrane (PM) analysis and molecular dynamics simulations revealed that hydroxyl groups of sphingolipid acyl chains play a crucial role in the organization of nanodomains, which are nanoscale liquid-ordered domains mainly formed by sphingolipids and sterols in the PM, through hydrogen bonds. In the PM of the fah1cfah2 mutant, the expression levels of 26.7% of the proteins, including defense-related proteins such as the pattern recognition receptors (PRRs) brassinosteroid insensitive 1-associated receptor kinase 1 and chitin elicitor receptor kinase 1, NADPH oxidase respiratory burst oxidase homolog D (RBOHD), and heterotrimeric G proteins, were lower than that in the wild-type. In addition, reactive oxygen species (ROS) burst was suppressed in the fah1cfah2 mutant after treatment with the pathogen-associated molecular patterns flg22 and chitin. These results indicated that 2-hydroxy sphingolipids are necessary for the organization of PM nanodomains and ROS burst through RBOHD and PRRs during pattern-triggered immunity.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Chitin/metabolism , Fatty Acids/metabolism , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Reactive Oxygen Species/metabolism , Respiratory Burst , Sphingolipids/metabolism
10.
Plant Cell ; 34(4): 1354-1374, 2022 03 29.
Article in English | MEDLINE | ID: mdl-35089338

ABSTRACT

Ubiquitination is a post-translational modification involving the reversible attachment of the small protein ubiquitin to a target protein. Ubiquitination is involved in numerous cellular processes, including the membrane trafficking of cargo proteins. However, the ubiquitination of the trafficking machinery components and their involvement in environmental responses are not well understood. Here, we report that the Arabidopsis thaliana trans-Golgi network/early endosome localized SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) protein SYP61 interacts with the transmembrane ubiquitin ligase ATL31, a key regulator of resistance to disrupted carbon (C)/nitrogen/(N)-nutrient conditions. SYP61 is a key component of membrane trafficking in Arabidopsis. The subcellular localization of ATL31 was disrupted in knockdown mutants of SYP61, and the insensitivity of ATL31-overexpressing plants to high C/low N-stress was repressed in these mutants, suggesting that SYP61 and ATL31 cooperatively function in plant responses to nutrient stress. SYP61 is ubiquitinated in plants, and its ubiquitination level is upregulated under low C/high N-nutrient conditions. These findings provide important insights into the ubiquitin signaling and membrane trafficking machinery in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon/metabolism , Nitrogen/metabolism , SNARE Proteins/metabolism , Ubiquitin/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , trans-Golgi Network/metabolism
11.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Article in English | MEDLINE | ID: mdl-33975946

ABSTRACT

Compaction of bulky DNA is a universal issue for all DNA-based life forms. Chloroplast nucleoids (chloroplast DNA-protein complexes) are critical for chloroplast DNA maintenance and transcription, thereby supporting photosynthesis, but their detailed structure remains enigmatic. Our proteomic analysis of chloroplast nucleoids of the green alga Chlamydomonas reinhardtii identified a protein (HBD1) with a tandem repeat of two DNA-binding high mobility group box (HMG-box) domains, which is structurally similar to major mitochondrial nucleoid proteins transcription factor A, mitochondrial (TFAM), and ARS binding factor 2 protein (Abf2p). Disruption of the HBD1 gene by CRISPR-Cas9-mediated genome editing resulted in the scattering of chloroplast nucleoids. This phenotype was complemented when intact HBD1 was reintroduced, whereas a truncated HBD1 with a single HMG-box domain failed to complement the phenotype. Furthermore, ectopic expression of HBD1 in the mitochondria of yeast Δabf2 mutant successfully complemented the defects, suggesting functional similarity between HBD1 and Abf2p. Furthermore, in vitro assays of HBD1, including the electrophoretic mobility shift assay and DNA origami/atomic force microscopy, showed that HBD1 is capable of introducing U-turns and cross-strand bridges, indicating that proteins with two HMG-box domains would function as DNA clips to compact DNA in both chloroplast and mitochondrial nucleoids.


Subject(s)
Chlamydomonas reinhardtii/genetics , Chloroplast Proteins/genetics , DNA, Chloroplast/genetics , Genome, Chloroplast/genetics , HMG-Box Domains/genetics , Tandem Repeat Sequences/genetics , Chlamydomonas reinhardtii/metabolism , Chloroplast Proteins/classification , Chloroplast Proteins/metabolism , DNA, Chloroplast/metabolism , Gene Expression Regulation , Mass Spectrometry/methods , Mutation , Phylogeny , Protein Binding , Proteomics/methods
12.
Plant Cell ; 33(2): 420-438, 2021 04 17.
Article in English | MEDLINE | ID: mdl-33866370

ABSTRACT

Plants take up and translocate nutrients through transporters. In Arabidopsis thaliana, the borate exporter BOR1 acts as a key transporter under boron (B) limitation in the soil. Upon sufficient-B supply, BOR1 undergoes ubiquitination and is transported to the vacuole for degradation, to avoid overaccumulation of B. However, the mechanisms underlying B-sensing and ubiquitination of BOR1 are unknown. In this study, we confirmed the lysine-590 residue in the C-terminal cytosolic region of BOR1 as the direct ubiquitination site and showed that BOR1 undergoes K63-linked polyubiquitination. A forward genetic screen identified that amino acid residues located in vicinity of the substrate-binding pocket of BOR1 are essential for the vacuolar sorting. BOR1 variants that lack B-transport activity showed a significant reduction of polyubiquitination and subsequent vacuolar sorting. Coexpression of wild-type (WT) and a transport-defective variant of BOR1 in the same cells showed degradation of the WT but not the variant upon sufficient-B supply. These findings suggest that polyubiquitination of BOR1 relies on its conformational transition during the transport cycle. We propose a model in which BOR1, as a B transceptor, directly senses the B concentration and promotes its own polyubiquitination and vacuolar sorting for quick and precise maintenance of B homeostasis.


Subject(s)
Antiporters/metabolism , Arabidopsis Proteins/metabolism , Boron/pharmacology , Proteolysis/drug effects , Ubiquitination , Amino Acid Sequence , Amino Acid Substitution , Antiporters/chemistry , Arabidopsis Proteins/chemistry , Binding Sites , Genetic Testing , Green Fluorescent Proteins/metabolism , Lysine/metabolism , Models, Biological , Polyubiquitin/metabolism , Protein Transport/drug effects , Protons , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/metabolism , Substrate Specificity , Ubiquitination/drug effects , Vacuoles/metabolism
13.
Plant Cell Rep ; 40(2): 327-337, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33385240

ABSTRACT

KEY MESSAGE: Two translation-related proteins are identified as FMT-interacting proteins. However, FMT, unlike mutants of other CLU genes in fly and human, has no clear impact on the accumulation of mitochondrial proteins. Organelle distribution is critical for effective metabolism and stress response and is controlled by various environmental factors. Clustered mitochondria (CLU) superfamily genes affect mitochondrial distribution and their disruptions cause mitochondria to cluster within a cell in various species including yeast, fly, mammals and Arabidopsis. In Arabidopsis thaliana, Friendly mitochondria (FMT) is a CLU gene that is required for normal mitochondrial distribution, but its molecular function is unclear. Here, we demonstrate that FMT interacts with some translation-related proteins (translation initiation factor eIFiso4G1 and glutamyl-tRNA synthetase OVA9), as well as itself. We also show FMT forms dynamic particles in the cytosol that sometimes move with mitochondria, and their movements are mainly controlled by actin filaments but also by microtubules. Similar results have been reported for animal CLU orthologs. However, an fmt mutant, unlike animal clu mutants, did not show any clear decrease of nuclear-encoded mitochondrial protein levels. This difference may reflect a functional divergence of FMT from other CLU superfamily genes.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Eukaryotic Initiation Factor-4G/metabolism , RNA-Binding Proteins/metabolism , Actin Cytoskeleton/metabolism , Alleles , Arabidopsis/physiology , Arabidopsis/ultrastructure , Arabidopsis Proteins/genetics , Cytosol/metabolism , Eukaryotic Initiation Factor-4G/genetics , Genes, Reporter , Microtubules/metabolism , Microtubules/ultrastructure , Mitochondria/metabolism , Mitochondria/ultrastructure , Mitochondrial Proteins/genetics , Mitochondrial Proteins/metabolism , Mutation , RNA-Binding Proteins/genetics , Two-Hybrid System Techniques
14.
Nat Commun ; 11(1): 4079, 2020 08 14.
Article in English | MEDLINE | ID: mdl-32796936

ABSTRACT

DNA methylation is an epigenetic modification that specifies the basic state of pluripotent stem cells and regulates the developmental transition from stem cells to various cell types. In flowering plants, the shoot apical meristem (SAM) contains a pluripotent stem cell population which generates the aerial part of plants including the germ cells. Under appropriate conditions, the SAM undergoes a developmental transition from a leaf-forming vegetative SAM to an inflorescence- and flower-forming reproductive SAM. While SAM characteristics are largely altered in this transition, the complete picture of DNA methylation remains elusive. Here, by analyzing whole-genome DNA methylation of isolated rice SAMs in the vegetative and reproductive stages, we show that methylation at CHH sites is kept high, particularly at transposable elements (TEs), in the vegetative SAM relative to the differentiated leaf, and increases in the reproductive SAM via the RNA-dependent DNA methylation pathway. We also show that half of the TEs that were highly methylated in gametes had already undergone CHH hypermethylation in the SAM. Our results indicate that changes in DNA methylation begin in the SAM long before germ cell differentiation to protect the genome from harmful TEs.


Subject(s)
DNA Methylation , Meristem/growth & development , Meristem/genetics , Oryza/genetics , Plant Shoots/growth & development , Plant Shoots/genetics , DNA Transposable Elements , Developmental Biology , Epigenomics , Flowers , Gene Expression Regulation, Plant , Inflorescence , Plant Leaves/metabolism , Plant Proteins/genetics
15.
Plant Cell Physiol ; 61(10): 1711-1723, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32678906

ABSTRACT

Plant phenotypes caused by mineral deficiencies differ depending on growth conditions. We recently reported that the growth of Arabidopsis thaliana was severely inhibited on MGRL-based zinc (Zn)-deficient medium but not on Murashige-Skoog-based Zn-deficient medium. Here, we explored the underlying reason for the phenotypic differences in Arabidopsis grown on the different media. The root growth and chlorophyll contents reduced by Zn deficiency were rescued by the addition of extra manganese (Mn) during short-term growth (10 or 14 d). However, this treatment did not affect the growth recovery after long-term growth (38 d). To investigate the reason for plant recovery from Zn deficiency, we performed the RNA-seq analysis of the roots grown on the Zn-basal medium and the Zn-depleted medium with/without additional Mn. Principal component analysis of the RNA-seq data showed that the gene expression patterns of plants on the Zn-basal medium were similar to those on the Zn-depleted medium with Mn, whereas those on the Zn-depleted medium without Mn were different from the others. The expression of several transcription factors and reactive oxygen species (ROS)-related genes was upregulated in only plants on the Zn-depleted medium without Mn. Consistent with the gene expression data, ROS accumulation in the roots grown on this medium was higher than those grown in other conditions. These results suggest that plants accumulate ROS and reduce their biomass under undesirable growth conditions, such as Zn depletion. Taken together, this study shows that the addition of extra Mn to the Zn-depleted medium induces transcriptional changes in ROS-related genes, thereby alleviating short-term growth inhibition due to Zn deficiency.


Subject(s)
Manganese/pharmacology , Seedlings/metabolism , Zinc/deficiency , Arabidopsis/drug effects , Arabidopsis/growth & development , Arabidopsis/metabolism , Plant Roots/drug effects , Plant Roots/growth & development , Plant Roots/metabolism , Reactive Oxygen Species/metabolism , Seedlings/drug effects , Seedlings/growth & development , Transcriptome/drug effects , Zinc/metabolism
16.
Plant Signal Behav ; 15(9): 1790196, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32633191

ABSTRACT

The endoplasmic reticulum (ER) is a multifunctional organelle that performs multiple cellular activities in eukaryotes. Visualizing ER using fluorescent proteins is a powerful method of analyzing its dynamics and to understand its functions. However, red fluorescent proteins with both an N-terminal signal peptide (SP) and a C-terminal ER retention tetrapeptide (HDEL) often cause mislocalization to vacuoles or extracellular spaces when they are constitutively expressed in Arabidopsis. To obtain a red fluorescent ER marker, we selected Arabidopsis cytochrome b5 -B (Cb5-B), a tail-anchored (TA) protein on the ER membrane. Its localization is determined by the transmembrane domain (TMD) and tail domain at the C-terminus. We fused the TMD and the tail domain of Cb5-B to the C-terminus of a red fluorescent protein, tdTomato (tdTomato-CTT). When tdTomato-CTT was constitutively expressed under the ubiquitin10 promoter in Arabidopsis, the fluorescent signal was exclusively detected at the ER by means of the reliable ER marker SP-GFP-HDEL. Therefore, tdTomato-CTT can accurately visualize the ER in stable Arabidopsis lines. Additionally, transient assays showed that tdTomato-CTT can also be used as an ER marker in onion, rice, and Nicotiana benthamiana. We believe that TA proteins could be used to generate various organellar membrane markers in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Cytochromes b5/metabolism , Endoplasmic Reticulum/metabolism , Luminescent Proteins/metabolism , Red Fluorescent Protein
17.
Nat Commun ; 11(1): 76, 2020 01 03.
Article in English | MEDLINE | ID: mdl-31900388

ABSTRACT

In many plant species, roots maintain specific growth angles relative to the direction of gravity, known as gravitropic set point angles (GSAs). These contribute to the efficient acquisition of water and nutrients. AtLAZY1/LAZY1-LIKE (LZY) genes are involved in GSA control by regulating auxin flow toward the direction of gravity in Arabidopsis. Here, we demonstrate that RCC1-like domain (RLD) proteins, identified as LZY interactors, are essential regulators of polar auxin transport. We show that interaction of the CCL domain of LZY with the BRX domain of RLD is important for the recruitment of RLD from the cytoplasm to the plasma membrane by LZY. A structural analysis reveals the mode of the interaction as an intermolecular ß-sheet in addition to the structure of the BRX domain. Our results offer a molecular framework in which gravity signal first emerges as polarized LZY3 localization in gravity-sensing cells, followed by polar RLD1 localization and PIN3 relocalization to modulate auxin flow.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/physiology , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Biological Transport , Gravitropism , Gravity Sensing , Indoleacetic Acids/metabolism , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/physiology , Plant Shoots , Protein Binding
18.
Plant Biotechnol J ; 18(2): 415-428, 2020 02.
Article in English | MEDLINE | ID: mdl-31301098

ABSTRACT

Small signalling peptides, generated from larger protein precursors, are important components to orchestrate various plant processes such as development and immune responses. However, small signalling peptides involved in plant immunity remain largely unknown. Here, we developed a pipeline using transcriptomics- and proteomics-based screening to identify putative precursors of small signalling peptides: small secreted proteins (SSPs) in rice, induced by rice blast fungus Magnaporthe oryzae and its elicitor, chitin. We identified 236 SSPs including members of two known small signalling peptide families, namely rapid alkalinization factors and phytosulfokines, as well as many other protein families that are known to be involved in immunity, such as proteinase inhibitors and pathogenesis-related protein families. We also isolated 52 unannotated SSPs and among them, we found one gene which we named immune response peptide (IRP) that appeared to encode the precursor of a small signalling peptide regulating rice immunity. In rice suspension cells, the expression of IRP was induced by bacterial peptidoglycan and fungal chitin. Overexpression of IRP enhanced the expression of a defence gene, PAL1 and induced the activation of the MAPKs in rice suspension cells. Moreover, the IRP protein level increased in suspension cell medium after chitin treatment. Collectively, we established a simple and efficient pipeline to discover SSP candidates that probably play important roles in rice immunity and identified 52 unannotated SSPs that may be useful for further elucidation of rice immunity. Our method can be applied to identify SSPs that are involved not only in immunity but also in other plant functions.


Subject(s)
Gene Expression Regulation, Plant , Magnaporthe , Oryza , Peptides , Transcriptome , Magnaporthe/physiology , Oryza/genetics , Oryza/immunology , Oryza/microbiology , Peptides/genetics , Peptides/immunology , Peptides/isolation & purification , Plant Diseases/microbiology , Plant Immunity/genetics , Plant Proteins/genetics , Proteomics
19.
New Phytol ; 226(3): 798-808, 2020 05.
Article in English | MEDLINE | ID: mdl-31869440

ABSTRACT

Synaptotagmin 1 (SYT1) has been recognised as a tethering factor of plant endoplasmic reticulum (ER)-plasma membrane (PM) contact sites (EPCSs) and partially localises to around plasmodesmata (PD). However, other components of EPCSs associated with SYT1 and functional links between the EPCSs and PD have not been identified. We explored interactors of SYT1 by immunoprecipitation and mass analysis. The dynamics, morphology and spatial arrangement of the ER in Arabidopsis mutants lacking the EPCS components were investigated using confocal microscopy and electron microscopy. PD permeability of EPCS mutants was assessed using a virus movement protein and free green fluorescent protein (GFP) as indicators. We identified two additional components of the EPCSs, SYT5 and SYT7, that interact with SYT1. The mutants of the three SYTs were defective in the anchoring of the ER to the PM. The ER near the PD entrance appeared to be weakly squeezed in the triple mutant compared with the wild-type. The triple mutant suppressed cell-to-cell movement of the virus movement protein, but not GFP diffusion. We revealed major additional components of EPCS associated with SYT1 and suggested that the EPCSs arranged around the PD squeeze the ER to regulate active transport via PD.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cell Membrane/metabolism , Endoplasmic Reticulum/metabolism , Plasmodesmata/metabolism , Synaptotagmin I
20.
Plant Biotechnol (Tokyo) ; 36(2): 107-112, 2019.
Article in English | MEDLINE | ID: mdl-31768111

ABSTRACT

As major components of the ubiquitin system, ubiquitin ligases mediate the transfer of ubiquitin to specific target substrates, thereby playing important roles in regulating a wide range of cellular processes. The Arabidopsis Tóxicos en Levadura (ATL) family is a group of plant-specific RING-type ubiquitin ligases with N-terminal transmembrane-like domains. To date, 91 ATL isoforms have been identified in the Arabidopsis genome, with some reported to regulate plant responses to environmental stresses. However, the functions of most ATLs remain unclear. This study showed that ATL8 is a sugar starvation response gene and that ATL8 expression was significantly increased by sugar starvation conditions but repressed by exogenous sugar supply. The ATL8 protein was found to possess ubiquitin ligase activity in vitro and to localize to membrane-bound compartments in plant cells. In addition, Starch Synthase 4 was identified as a putative interactor with ATL8, suggesting that ATL8 may be involved in modulating starch accumulation in response to sugar availability. These findings suggest that ATL8 functions as a membrane-localized ubiquitin ligase likely to be involved in the adaptation of Arabidopsis plants to sugar starvation stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...