Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem Lett ; 13(33): 7788-7796, 2022 Aug 25.
Article in English | MEDLINE | ID: mdl-35973202

ABSTRACT

Bright, persistent, room-temperature phosphorescence (RTP) at long wavelengths is crucial for high-resolution imaging in the absence of in vivo autofluorescence. However, efficient long-wavelength RTP is difficult. Here, enhanced red RTP based on a unique mechanism was observed from deuterated dibenzo[g.p]chrysenes substituted with a phenoxazine. The yield was 16%, with an average lifetime of 1.8 s. An orthogonal dihedral angle between the dibenzo[g.p]chrysene and the phenoxazine in the lowest excited singlet state allowed a forbidden fluorescence to increase triplet generation. When the dihedral angle changed, disengagement of the forbidden fluorescence from the excited singlet state occurred, and the lowest triplet excited state had a facilitated phosphorescence rate without increasing its nonradiative transition rate. The facilitated phosphorescence rate as well as the large triplet yield led to the enhanced red RTP.


Subject(s)
Electronics , Luminescence , Fluorescence , Temperature
2.
Chemistry ; 17(43): 12067-75, 2011 Oct 17.
Article in English | MEDLINE | ID: mdl-21922578

ABSTRACT

Directed helicity control of a polyacetylene dynamic helix was achieved by hybridization with a rotaxane skeleton placed on the side chain. Rotaxane-tethering phenylacetylene monomers were synthesized in good yields by the ester end-capping of pseudorotaxanes that consisted of optically active crown ethers and sec-ammonium salts with an ethynyl benzoic acid. The monomers were polymerized with [{RhCl(nbd)}(2)] (nbd=norbornadiene) to give the corresponding polyacetylenes in high yields. Polymers with optically active wheel components that are far from the main chain show no Cotton effect, thereby indicating the formation of racemic helices. Our proposal that N-acylative neutralization of the sec-ammonium moieties of the side-chain rotaxane moieties enables asymmetric induction of a one-handed helix as the wheel components approach the main chain is strongly supported by observation of the Cotton effect around the main-chain absorption region. A polyacetylene with a side-chain rotaxane that has a shorter axle component shows a Cotton effect despite the ammonium structure of the side-chain rotaxane moiety, thereby suggesting the importance of proximity between the wheel and the main chain for the formation of a one-handed helix. Through-space chirality induction in the present systems proved to be as powerful as through-bond chirality induction for formation of a one-handed helix, as demonstrated in an experiment using non-rotaxane-based polyacetylene that had an optically active binaphthyl group. The present protocol for controlling the helical structure of polyacetylene therefore provides the basis for the rational design of one-handed helical polyacetylenes.


Subject(s)
Acetylene/analogs & derivatives , Crown Ethers/chemistry , Polymers/chemistry , Polyynes/chemistry , Rotaxanes/chemistry , Absorption , Acetylene/chemistry , Circular Dichroism , Molecular Conformation , Molecular Structure , Protein Structure, Secondary , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...