Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Biochem Biophys Res Commun ; 664: 50-58, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37137223

ABSTRACT

The molecular mechanisms by which neuronal processes grow are extremely complicated, involving fine-tuned regulation of extracellular and intracellular signals. It remains to be elucidated which molecules are contained in the regulation. Herein, we report for the first time that heat shock protein family A member 5 (HSPA5, also called immunoglobulin heavy chain binding endoplasmic reticulum [ER] protein [BiP]) is secreted from mouse primary dorsal neuronal ganglion (DRG) cells or neuronal cell line N1E-115, a frequently used neuronal differentiation model. Supporting these results, HSPA5 protein was co-localized not only with ER antigen KDEL but also with intracellular vesicles such as Rab11-positive secretory vesicles. Unexpectedly, addition of HSPA5 inhibited elongation of neuronal processes, whereas neutralization of extracellular HSPA5 with the antibodies elongated processes, characterizing extracellular HSPA5 as a negative regulator of neuronal differentiation. Treatment of cells with neutralizing antibodies for low-density lipoprotein receptor (LDLR) did not have significant effects on process elongation, whereas LDLR-related protein 1 (LRP1) antibodies promoted differentiation, implying that LRP1 may act as a receptor candidate for HSPA5. Interestingly, extracellular HSPA5 was greatly decreased following treatment with tunicamycin, an ER stress inducer, illustrating that the ability to form neuronal processes could be preserved, even under stress. These results suggest that neuronal HSPA5 itself is secreted to contribute to inhibitory effects on neuronal cell morphological differentiation and can be included on the list of extracellular signaling molecules negatively controlling differentiation.


Subject(s)
Endoplasmic Reticulum Chaperone BiP , Heat-Shock Proteins , Mice , Animals , Heat-Shock Proteins/metabolism , Endoplasmic Reticulum/metabolism , Endoplasmic Reticulum Stress , Cell Line
2.
Neurochem Res ; 47(9): 2684-2702, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35380399

ABSTRACT

Hereditary peripheral neuropathies called Charcot-Marie-Tooth (CMT) disease affect the sensory nerves as well as motor neurons. CMT diseases are composed of a heterogeneous group of diseases. They are characterized by symptoms such as muscle weakness and wasting. Type 2 CMT (CMT2) disease is a neuropathy with blunted or disrupted neuronal morphological differentiation phenotypes including process formation of peripheral neuronal axons. In the early stages of CMT2, demyelination that occurs in Schwann cells (glial cells) is rarely observed. CMT2W is an autosomal-dominant disease and is responsible for the gene encoding histidyl-tRNA synthetase 1 (HARS1), which is a family molecule of cytoplasmic aminoacyl-tRNA synthetases and functions by ligating histidine to its cognate tRNA. Despite increasing knowledge of the relationship of mutations on responsible genes with diseases, it still remains unclear how each mutation affects neuronal differentiation. Here we show that in neuronal N1E-115 cells, a severe Asp364-to-Tyr (D364Y) mutation of HARS1 leads to formation of small aggregates of HARS1 proteins; in contrast, wild type proteins are distributed throughout cell bodies. Expression of D364Y mutant proteins inhibited process formation whereas expression of wild type proteins possessed the normal differentiation ability to grow processes. Pretreatment with the antiepileptic valproic acid recovered inhibition of process formation by D364Y mutant proteins through the c-Jun N-terminal kinase signaling pathway. Taken together, these results indicate that the D364Y mutation of HARS1 causes HARS1 proteins to form small aggregates, inhibiting process growth, and that these effects are recovered by valproic acid. This could be a potential therapeutic drug for CMT2W at the cellular levels.


Subject(s)
Amino Acyl-tRNA Synthetases/metabolism , Charcot-Marie-Tooth Disease , Valproic Acid , Anticonvulsants/pharmacology , Anticonvulsants/therapeutic use , Charcot-Marie-Tooth Disease/drug therapy , Charcot-Marie-Tooth Disease/genetics , Humans , JNK Mitogen-Activated Protein Kinases , Mutant Proteins/genetics , Mutation , RNA, Transfer , Valproic Acid/pharmacology , Valproic Acid/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...