Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
2.
Int J Oncol ; 44(5): 1461-9, 2014 May.
Article in English | MEDLINE | ID: mdl-24589652

ABSTRACT

Recent studies have shown that cancer immunotherapy could be a promising therapeutic approach for the treatment of cancer. In the present study, to identify novel tumor-associated antigens (TAAs), the proteins expressed in a panel of cancer cells were serologically screened by immunoblot analysis and the eukaryotic elongation factor 2 (eEF2) was identified as an antigen that was recognized by IgG autoantibody in sera from a group of patients with head and neck squamous cell carcinoma (HNSCC) or colon cancer. Enzyme-linked immunosorbent assay showed that serum eEF2 IgG Ab levels were significantly higher in colorectal and gastric cancer patients compared to healthy individuals. Immunohistochemistry experiments showed that the eEF2 protein was overexpressed in the majority of lung, esophageal, pancreatic, breast and prostate cancers, HNSCC, glioblastoma multiforme and non-Hodgkin's lymphoma (NHL). Knockdown of eEF2 by short hairpin RNA (shRNA) significantly inhibited the growth in four eEF2-expressing cell lines, PC14 lung cancer, PCI6 pancreatic cancer, HT1080 fibrosarcoma and A172 glioblastoma cells, but not in eEF2-undetectable MCF7 cells. Furthermore, eEF2-derived 9-mer peptides, EF786 (eEF2 786-794 aa) and EF292 (eEF2 292-300 aa), elicited cytotoxic T lymphocyte (CTL) responses in peripheral blood mononuclear cells (PBMCs) from an HLA-A*24:02- and an HLA-A*02:01-positive healthy donor, respectively, in an HLA-A-restricted manner. These results indicated that the eEF2 gene is overexpressed in the majority of several types of cancers and plays an oncogenic role in cancer cell growth. Moreover, the eEF2 gene product is immunogenic and a promising target molecule of cancer immunotherapy for several types of cancers.


Subject(s)
Antigens, Neoplasm/genetics , Elongation Factor 2 Kinase/genetics , Neoplasms/genetics , Neoplasms/immunology , Antigens, Neoplasm/metabolism , Cell Line, Tumor , Elongation Factor 2 Kinase/metabolism , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Immunoglobulin G/immunology , MCF-7 Cells , Neoplasms/pathology , Sequence Analysis, DNA , T-Lymphocytes, Cytotoxic/immunology
3.
Int J Cancer ; 125(2): 381-7, 2009 Jul 15.
Article in English | MEDLINE | ID: mdl-19384943

ABSTRACT

There are urgent needs to develop methods for early detection of nonsmall cell lung cancer (NSCLC) because of its increasing incidence and poor prognosis. Here, we analyzed the production of IgG antibody (WT1 Ab) against WT1 (Wilms' tumor gene) protein that was overexpressed in the majority of NSCLC. Enzyme-linked immuno-sorbent assay showed that WT1 Ab was produced in all of 91 NSCLC patients and 70 healthy individuals and that WT1 Ab titers were significantly higher in NSCLC patients compared with healthy individuals. When the cut-off level of WT1 Ab titers were fixed at mean + 3SD of those in healthy individuals, 26.4% of NSCLC patients had WT1 Ab titers over the cut-off level, and positive rates of WT1 Ab at each clinical stage were 25.0, 30.8 and 38.4% in stage I, II and III NSCLC, respectively. When WT1 Ab was combined with CEA or CYFRA for detection of NSCLC, positive detection rates increased from 25.0 to 34.1 and 31.8%, respectively, in stage I and from 38.4 to 69.2 and 46.1%, respectively, in stage III, but not changed in stage II. Western blot analysis showed that dominant subclass of WT1 Ab was Th1-type IgG2. Interestingly, elevation of WT1 Ab titers was significantly associated with longer disease-free survival in patients with stages I-III NSCLC. These results showed that WT1 Ab could be a useful marker for early detection of NSCLC and its prognostic prediction. These results also suggested that WT1-specific immune responses played an important role in anti-cancer immunity in NSCLC.


Subject(s)
Biomarkers, Tumor/blood , Carcinoma, Non-Small-Cell Lung/diagnosis , Immunoglobulin G/blood , Lung Neoplasms/diagnosis , WT1 Proteins/genetics , Blotting, Western , Carcinoma, Non-Small-Cell Lung/immunology , Early Diagnosis , Enzyme-Linked Immunosorbent Assay , Humans , Immunohistochemistry , Lung Neoplasms/immunology , Prognosis
4.
Int J Oncol ; 34(5): 1181-9, 2009 May.
Article in English | MEDLINE | ID: mdl-19360331

ABSTRACT

A high level protein synthesis is one of the characteristics of cancer cells. The aim of this study is to show the contribution of eukaryotic elongation factor 2 (eEF2), which plays an essential role in the polypeptide chain elongation step, in the tumorigenesis of gastrointestinal cancers. In the present study, we demonstrated by using immunohistochemistry that eEF2 protein was overexpressed in 92.9% (13 of 14) of gastric and 91.7% (22 of 24) of colorectal cancers. No mutations were found in any of the exons of the eEF2 gene in six gastric and six colorectal cancers. Knockdown of eEF2 by eEF2-specific short-hairpin RNA (shEF2) inhibited cancer cell growth in two gastric cancer cell lines, AZ-521 and MKN28, and one colon cancer cell line, SW620. Flow cytometric analysis showed that knockdown of eEF2 induced G2/M arrest and resulted in inactivation of Akt and cdc2 (a G2/M regulator) and activation of eEF2 kinase (a negative regulator of eEF2) in these cancer cells. Conversely, forced expression of eEF2 in AZ-521 cells significantly enhanced the cell growth through promotion of G2/M progression in cell cycle, activated Akt and cdc2, and inactivated eEF2 kinase. Furthermore, forced expression of eEF2 in these cancer cells enhanced in vivo tumorigenicity in a mouse xenograft model. These results showed that overexpressed eEF2 in gastrointestinal cancers promoted G2/M progression and enhanced their cell growth in vitro and in vivo. These results also suggested a novel linkage between translational elongation and cell cycle mechanisms, implying that the linkage might play an important role to orchestrate the deregulated translation and cell cycle mechanisms for promotion of the development of gastrointestinal cancers.


Subject(s)
Adenocarcinoma/genetics , Cell Division/genetics , G2 Phase/genetics , Gastrointestinal Neoplasms/genetics , Peptide Elongation Factor 2/genetics , Adult , Aged , Aged, 80 and over , Animals , Cell Cycle/genetics , Female , Gene Expression Regulation, Neoplastic , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Middle Aged , Models, Biological , Tumor Cells, Cultured , Up-Regulation , Young Adult
5.
Int J Oncol ; 32(3): 701-11, 2008 Mar.
Article in English | MEDLINE | ID: mdl-18292948

ABSTRACT

Wilms' tumor gene WT1 is overexpressed in leukemia and various types of solid tumors and plays an important role in leukemogenesis and tumorigenesis. We tested apoptosis-inducing ability of short hairpin RNAs targeting exon 5 (shWTE5), exon10 (shWTE10) and 3'UTR (shWT3U) of the WT1 gene. Among the three WT1-shRNAs, since shWTE5 most effectively induced apoptosis, its ability as an apoptosis-inducing agent was intensively examined. shWTE5 induced mitochondrial damage and resultant apoptosis in five WT1-expressing solid cancer cells originated from gastric (AZ-521), lung (LU99B), ovarian (TYKnuCPr) cancers, fibrosarcoma (HT-1080) and glioblastoma (A172). Moreover, shWTE5 significantly enhanced apoptosis induced by chemotherapeutic agents, doxorubicin (DOX) and etoposide (ETP), or by death ligand TRAIL in all of the four solid tumor cells examined (HT-1080, LU99B, TYK and A172). Transduction of one each of WT1 isoforms with exon 5 [17AA(+)KTS(+) and 17AA(+)KTS(-)] prevented mitochondrial damage induced by ETP or TRAIL and inhibited apoptosis. These results showed that shWTE5 induced apoptosis through the suppression of the WT1 isoform with exon 5. Furthermore, shWTE5 increased expression of proapoptotic Bak and Bax proteins and decreased antiapoptotic Bcl-xL and Bcl-2 proteins in WT1-expressing HT-1080 cells, indicating that WT1 isoforms with exon 5 might play an antiapoptotic role through regulation of Bcl-2 family genes in solid tumor cells. The results presented here demonstrated that WT1-shRNA targeting exon 5 should serve as a potent anti-cancer agent for various types of solid tumors.


Subject(s)
Apoptosis/genetics , Genes, Wilms Tumor , Neoplasms/genetics , Neoplasms/therapy , RNA, Small Interfering/genetics , RNA, Small Interfering/therapeutic use , Antineoplastic Agents/pharmacology , Doxorubicin/pharmacology , Drug Synergism , Etoposide/pharmacology , Exons , Gene Expression Regulation, Neoplastic/drug effects , Genes, Wilms Tumor/physiology , Genes, bcl-2 , Genetic Therapy , HeLa Cells , Humans , Neoplasms/pathology , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA, Small Interfering/pharmacology , Signal Transduction/genetics , TNF-Related Apoptosis-Inducing Ligand/genetics , Transfection , Tumor Cells, Cultured , WT1 Proteins/antagonists & inhibitors , WT1 Proteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL