Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Matter ; 18(22): 4338-4350, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35622067

ABSTRACT

We numerically studied the rheological properties and microstructure formation under shear flow in a ternary particle/oil/water dispersion system. Our numerical simulation method was based on a phase-field model for capturing a free interface, the discrete element method for tracking particle motion, the immersed boundary method for calculating fluid-particle interactions, and a wetting model that assigns an order parameter to the solid surface according to the wettability. The effects of the water-phase volume fraction and shear rate on the microstructure and apparent viscosity were investigated. When the water-phase volume fraction was low, a pendular state was formed, and with an increase in the water-phase volume fraction, the state transitioned into a co-continuous state and a Pickering emulsion. This change in the microstructure state is qualitatively consistent with the results of previous experimental studies. In the pendular state, the viscosity increased with an increase in the water-phase volume fraction. This was due to the development of a network structure connected by liquid bridges, and the increase in the coordination number was quantitatively confirmed. In the case of the pendular state, significant shear thinning was observed, but in the case of the Pickering emulsion, no significant shear thinning was observed. It is concluded that this is due to the difference in the manner in which the microstructure changes with the shear rate. This is the first study to numerically demonstrate the microstructure formation of a ternary dispersion under shear flow and its correlation with the apparent viscosity.

2.
Langmuir ; 38(6): 2094-2108, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-35104148

ABSTRACT

Owing to the limitations of visualization techniques in experimental studies and low-resolution numerical models based on computational fluid dynamics (CFD), the detailed behavior of oil droplets during microfiltration is not well understood. Hence, a high-resolution CFD model based on an in-house direct numerical simulation (DNS) code was constructed in this study to analyze the detailed dynamics of an oil-in-water (O/W) emulsion using a microfiltration membrane. The realistic microporous structure of commercial ceramic microfiltration membranes (mullite and α-alumina membranes) was obtained using an image processing technique based on focused ion beam scanning electron microscopy (FIB-SEM). Numerical simulations of microfiltration of O/W emulsions on the membrane microstructure obtained by FIB-SEM were performed, and the effects of different parameters, including contact angle, transmembrane pressure, and membrane microporous structure, on filtration performance were studied. Droplet deformation had a strong impact on filtration behavior because coalesced droplets with diameters larger than the pore diameter permeated the membrane pores. The permeability, oil hold-up fraction inside the pores, and rejection were considerably influenced by the contact angle, while the transmembrane pressure had a little impact on the permeability and oil hold-up fraction. The membrane structure, especially the pore size distribution, also had a significant effect on the microfiltration behavior and performance.

3.
Langmuir ; 36(17): 4711-4720, 2020 May 05.
Article in English | MEDLINE | ID: mdl-32275435

ABSTRACT

We numerically study the droplet coalescence of an oil-in-water (O/W) emulsion permeating through a fibrous filter. Our numerical simulation method is based on the phase-field model for capturing a free interface, the immersed boundary method used to calculate fluid-solid interactions, and the wetting model that assigns an order parameter to the solid surface according to the wettability. To represent realistic flow inside the filter during simulation, the voxel data obtained from X-ray computed tomography (CT) images of the filter microstructure are used in the simulation. The effects of the filter microstructure, such as fiber arrangement and orientation of the droplet coalescence, are investigated by using several filter domains. Our simulations demonstrate that the arrangement of closely attached fibers placed at the permeate-side surface enhances droplet coalescence. In addition, the parallel orientation of the fiber to the main flow direction suppresses droplet enlargement due to the coalescence but reduces the number of droplet passages without coalescence in the filter.

4.
Rev Sci Instrum ; 88(2): 024101, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28249523

ABSTRACT

The temperature distribution, microwave absorption efficiency, and dielectric properties of a copper (ii) oxide (CuO) pellet heated by microwave irradiation were investigated for use in developing a single-mode-type microwave heating thermogravimetry apparatus. The validity of the apparatus was confirmed by comparing the measured data with the results of numerical simulations. The dielectric properties and error margins of other parameters estimated using the apparatus were also examined. The temperature distribution of the CuO pellet was observed to decrease monotonously on moving from the outlet to the inlet side of the apparatus. A three-dimensional numerical simulation of the electromagnetic field accurately reproduced this temperature distribution, suggesting the one-way movement of microwaves in the single-mode-type microwave apparatus. The numerically determined dependency of the CuO absorption efficiency was also found to be in very good agreement with published data. The same was the case with the permittivity loss of the CuO at various temperatures, as estimated from the measured microwave absorption efficiency. However, a larger error was observed in the estimation of the permittivity loss of a material with a lower microwave absorption efficiency, which was apparently due to the measurement error of the absorption efficiency of such a material.

5.
J Environ Manage ; 90(8): 2709-14, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19304368

ABSTRACT

Waste incineration fly ash was successfully recycled to calcium phosphate hydrogel, a type of fast proton conductor. The crystallized hydrogel from incineration fly ash had a lower electric conductivity and a lower crystallinity than that from calcium carbonate reagent. However, the difference in electric conductivity between these crystallized hydrogels decreases with temperature. This was due to the presence of potassium in the incineration fly ash. The fuel cell with a membrane electrode assembly (MEA) using the calcium phosphate hydrogel membrane prepared from incineration fly ash was observed to generate electricity. The performance of this fuel cell was almost equal to that of a mixture of K(2)CO(3) and CaCO(3) reagents; further, the performance of the former was superior to the fuel cell with a perfluorosulfonic polymer membrane at temperatures greater than approximately 85 degrees C.


Subject(s)
Calcium Phosphates/chemistry , Carbon , Energy-Generating Resources , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemical synthesis , Incineration/instrumentation , Incineration/methods , Particulate Matter , Coal Ash
6.
J Hazard Mater ; 168(2-3): 1617-21, 2009 Sep 15.
Article in English | MEDLINE | ID: mdl-19328627

ABSTRACT

Waste incineration fly ash and bone powder could be successfully recycled to calcium phosphate hydrogel, a type of fast proton conductor. The electric conductivity of the crystallized hydrogel from them was compared with that from calcium carbonate reagent. It was found that the conductivity of the hydrogel from bone powder is almost equal to that from calcium carbonate reagent, which is higher than that from incineration fly ash. Because the crystallized hydrogel from incineration ash has a lower crystallinity than that from bone powder and calcium carbonate reagent. However, the difference of the conductivity among them can be hardly observed above 100 degrees C. The fuel cell with membrane electrode assembly (MEA) using the calcium phosphate hydrogel membrane prepared from incineration fly ash and bone powder was observed to generate electricity. The performance of fuel cells having the hydrogel membrane obtained from all raw materials increases with the cell temperature, and the fuel cell containing the hydrogel membrane from incineration fly ash has the highest dependence of the fuel cell performance. For this reason, the difference in the cell performance among them can be hardly observed above 120 degrees C. This tendency agrees with the change in the electric conductivity with the temperature. Further, the performance of all fuel cells with the hydrogel membrane is superior to that of the fuel cell with perfluorosulfonic polymer membrane at temperatures greater than approximately 85 degrees C.


Subject(s)
Bone and Bones , Calcium Phosphates/chemistry , Carbon , Hydrogels , Incineration , Particulate Matter , Animals , Chickens , Coal Ash , Hot Temperature , Powders
7.
J Hazard Mater ; 163(1): 391-5, 2009 Apr 15.
Article in English | MEDLINE | ID: mdl-18684561

ABSTRACT

Waste incineration fly ash and bone powder could be successfully recycled into calcium phosphate hydrogel, a type of fast proton conductor. Various properties of the intermediate and calcium phosphate hydrogel from them were characterized and compared with that from calcium carbonate reagent. It was found that the intermediate from the incineration fly ash and calcium phosphate glass was more brittle than that from bone powder and calcium carbonate reagent. The electric conductivity of crystallized hydrogel obtained from all raw materials increases exponentially with temperature. However, the crystallized hydrogel from incineration fly ash has lower electric conductivity and lower crystallinity than that from bone powder and the reagent. Moreover, the difference in electric conductivity between these crystallized hydrogels decreases with temperature. Compared with using the reagent as a raw material, bone powder provides a 25% reduction in the usage of H(3)PO(4) to acquire the crystallized hydrogel which has the highest conductivity. These experimental results suggest that the incineration fly ash and bone powder are useful calcium sources for the synthesis of calcium phosphate hydrogel.


Subject(s)
Bone and Bones/chemistry , Calcium Phosphates/chemical synthesis , Carbon/chemistry , Hydrogel, Polyethylene Glycol Dimethacrylate/chemical synthesis , Incineration , Particulate Matter/chemistry , Animals , Calcium Phosphates/chemistry , Chickens , Coal Ash , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Molecular Structure , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...