Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
Int J Mol Sci ; 25(3)2024 Feb 04.
Article in English | MEDLINE | ID: mdl-38339168

ABSTRACT

Differentiation-inducing factor 1 (DIF-1), found in Dictyostelium discoideum, has antiproliferative and glucose-uptake-promoting activities in mammalian cells. DIF-1 is a potential lead for the development of antitumor and/or antiobesity/antidiabetes drugs, but the mechanisms underlying its actions have not been fully elucidated. In this study, we searched for target molecules of DIF-1 that mediate the actions of DIF-1 in mammalian cells by identifying DIF-1-binding proteins in human cervical cancer HeLa cells and mouse 3T3-L1 fibroblast cells using affinity chromatography and liquid chromatography-tandem mass spectrometry and found mitochondrial malate dehydrogenase (MDH2) to be a DIF-1-binding protein in both cell lines. Since DIF-1 has been shown to directly inhibit MDH2 activity, we compared the effects of DIF-1 and the MDH2 inhibitor LW6 on the growth of HeLa and 3T3-L1 cells and on glucose uptake in confluent 3T3-L1 cells in vitro. In both HeLa and 3T3-L1 cells, DIF-1 at 10-40 µM dose-dependently suppressed growth, whereas LW6 at 20 µM, but not at 2-10 µM, significantly suppressed growth in these cells. In confluent 3T3-L1 cells, DIF-1 at 10-40 µM significantly promoted glucose uptake, with the strongest effect at 20 µM DIF-1, whereas LW6 at 2-20 µM significantly promoted glucose uptake, with the strongest effect at 10 µM LW6. Western blot analyses showed that LW6 (10 µM) and DIF-1 (20 µM) phosphorylated and, thus, activated AMP kinase in 3T3-L1 cells. Our results suggest that MDH2 inhibition can suppress cell growth and promote glucose uptake in the cells, but appears to promote glucose uptake more strongly than it suppresses cell growth. Thus, DIF-1 may promote glucose uptake, at least in part, via direct inhibition of MDH2 and a subsequent activation of AMP kinase in 3T3-L1 cells.


Subject(s)
Glucose , Malate Dehydrogenase , Animals , Humans , Mice , 3T3-L1 Cells/drug effects , 3T3-L1 Cells/metabolism , Adenylate Kinase/metabolism , Dictyostelium/metabolism , Glucose/metabolism , HeLa Cells/drug effects , HeLa Cells/metabolism , Malate Dehydrogenase/antagonists & inhibitors , Malate Dehydrogenase/metabolism , Mammals/metabolism
2.
Molecules ; 28(23)2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38067655

ABSTRACT

Differentiation-inducing factor 1 (DIF-1) isolated from the cellular slime mold Dictyostelium discoideum can inhibit mammalian calmodulin-dependent cAMP/cGMP phosphodiesterase (PDE1) in vitro. DIF-1 also promotes glucose uptake, at least in part, via a mitochondria- and AMPK-dependent pathway in mouse 3T3-L1 fibroblast cells, but the mechanism underlying this effect has not been fully elucidated. In this study, we investigated the effects of DIF-1 on intracellular cAMP and cGMP levels, as well as the effects that DIF-1 and several compounds that increase cAMP and cGMP levels have on glucose uptake in confluent 3T3-L1 cells. DIF-1 at 20 µM (a concentration that promotes glucose uptake) increased the level of intracellular cAMP by about 20% but did not affect the level of intracellular cGMP. Neither the PDE1 inhibitor 8-methoxymethyl-3-isobutyl-1-methylxanthine at 10-200 µM nor the broad-range PDE inhibitor 3-isobutyl-1-methylxanthine at 40-400 µM had any marked effects on glucose uptake. The membrane-permeable cAMP analog 8-bromo-cAMP at 200-1000 µM significantly promoted glucose uptake (by 20-25%), whereas the membrane-permeable cGMP analog 8-bromo-cGMP at 3-100 µM did not affect glucose uptake. The adenylate cyclase activator forskolin at 1-10 µM promoted glucose uptake by 20-30%. Thus, DIF-1 may promote glucose uptake by 3T3-L1 cells, at least in part, via an increase in intracellular cAMP level.


Subject(s)
Dictyostelium , Mice , Animals , 3T3-L1 Cells , Biological Transport , Phosphodiesterase Inhibitors/pharmacology , Glucose , Mammals
3.
J Immunol ; 203(12): 3386-3394, 2019 12 15.
Article in English | MEDLINE | ID: mdl-31694909

ABSTRACT

Human leukocyte Ig-like receptors (LILR) LILRB1 and LILRB2 are immune checkpoint receptors that regulate a wide range of physiological responses by binding to diverse ligands, including HLA-G. HLA-G is exclusively expressed in the placenta, some immunoregulatory cells, and tumors and has several unique isoforms. However, the recognition of HLA-G isoforms by LILRs is poorly understood. In this study, we characterized LILR binding to the ß2-microglobulin (ß2m)-free HLA-G1 isoform, which is synthesized by placental trophoblast cells and tends to dimerize and multimerize. The multimerized ß2m-free HLA-G1 dimer lacked detectable affinity for LILRB1, but bound strongly to LILRB2. We also determined the crystal structure of the LILRB1 and HLA-G1 complex, which adopted the typical structure of a classical HLA class I complex. LILRB1 exhibits flexible binding modes with the α3 domain, but maintains tight contacts with ß2m, thus accounting for ß2m-dependent binding. Notably, both LILRB1 and B2 are oriented at suitable angles to permit efficient signaling upon complex formation with HLA-G1 dimers. These structural and functional features of ligand recognition by LILRs provide novel insights into their important roles in the biological regulations.


Subject(s)
HLA-G Antigens/chemistry , Models, Molecular , Protein Conformation , Receptors, Immunologic/chemistry , Binding Sites , HLA-G Antigens/genetics , HLA-G Antigens/immunology , Humans , Ligands , Molecular Dynamics Simulation , Multiprotein Complexes/chemistry , Multiprotein Complexes/metabolism , Protein Binding , Protein Isoforms , Receptors, Immunologic/metabolism , Structure-Activity Relationship , beta 2-Microglobulin/chemistry , beta 2-Microglobulin/metabolism
4.
Nat Commun ; 9(1): 4330, 2018 10 18.
Article in English | MEDLINE | ID: mdl-30337538

ABSTRACT

The MILL family, composed of MILL1 and MILL2, is a group of nonclassical MHC class I molecules that occur in some orders of mammals. It has been reported that mouse MILL2 is involved in wound healing; however, the molecular mechanisms remain unknown. Here, we determine the crystal structure of MILL2 at 2.15 Å resolution, revealing an organization similar to classical MHC class I. However, the α1-α2 domains are not tightly fixed on the α3-ß2m domains, indicating unusual interdomain flexibility. The groove between the two helices in the α1-α2 domains is too narrow to permit ligand binding. Notably, an unusual basic patch on the α3 domain is involved in the binding to heparan sulfate which is essential for MILL2 interactions with fibroblasts. These findings suggest that MILL2 has a unique structural architecture and physiological role, with binding to heparan sulfate proteoglycans on fibroblasts possibly regulating cellular recruitment in biological events.


Subject(s)
Heparitin Sulfate/metabolism , Histocompatibility Antigens Class I/chemistry , Histocompatibility Antigens Class I/metabolism , Membrane Glycoproteins/chemistry , Membrane Glycoproteins/metabolism , Animals , Mice , Models, Molecular , Protein Binding , Protein Domains , Protein Structure, Secondary , Recombinant Proteins/metabolism
5.
Sci Rep ; 8(1): 8019, 2018 May 17.
Article in English | MEDLINE | ID: mdl-29769584

ABSTRACT

A correction to this article has been published and is linked from the HTML and PDF versions of this paper. The error has not been fixed in the paper.

6.
Sci Rep ; 7(1): 16386, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180624

ABSTRACT

Although α-synuclein (αSyn) has been linked to Parkinson's disease (PD), the mechanisms underlying the causative role in PD remain unclear. We previously proposed a model for a transportable microtubule (tMT), in which dynein is anchored to a short tMT by LIS1 followed by the kinesin-dependent anterograde transport; however the mechanisms that produce tMTs have not been determined. Our in vitro investigations of microtubule (MT) dynamics revealed that αSyn facilitates the formation of short MTs and preferentially binds to MTs carrying 14 protofilaments (pfs). Live-cell imaging showed that αSyn co-transported with dynein and mobile ßIII-tubulin fragments in the anterograde transport. Furthermore, bi-directional axonal transports are severely affected in αSyn and γSyn depleted dorsal root ganglion neurons. SR-PALM analyses further revealed the fibrous co-localization of αSyn, dynein and ßIII-tubulin in axons. More importantly, 14-pfs MTs have been found in rat femoral nerve tissue, and they increased approximately 19 fold the control in quantify upon nerve ligation, indicating the unconventional MTs are mobile. Our findings indicate that αSyn facilitates to form short, mobile tMTs that play an important role in the axonal transport. This unexpected and intriguing discovery related to axonal transport provides new insight on the pathogenesis of PD.


Subject(s)
Axonal Transport , Axons/metabolism , Microtubules/metabolism , alpha-Synuclein/metabolism , Animals , Axons/ultrastructure , Chromatography, Liquid , Femoral Nerve/metabolism , Femoral Nerve/ultrastructure , Gas Chromatography-Mass Spectrometry , Male , Microtubules/chemistry , Neurons/metabolism , Protein Binding , Protein Multimerization , Protein Transport , Proteome , Proteomics/methods , Rats , Recombinant Proteins/metabolism , Tubulin/metabolism , alpha-Synuclein/chemistry , alpha-Synuclein/genetics
7.
J Sports Med Phys Fitness ; 56(6): 678-83, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27336797

ABSTRACT

BACKGROUND: For adolescent girls, less information on the effects of school-based exercise training is available from earlier studies. This study aimed to determine the effects of school-based squat training on body composition and muscular strength in adolescent girls. METHODS: Fifty-two girls (13.8±0.6 years) were randomly assigned to the training and control groups. The training group conducted an 8-week body mass-based squat exercise training (100 reps/day, 45 sessions) as a part of after-school activity. Body composition (bioelectrical impedance analyzer), muscle thickness at the thigh anterior (ultrasound), and maximal isometric knee extension strength (myometer) were determined before and after the intervention. The magnitude of maturation was assessed using Tanner stage criteria of pubic hair before the intervention. RESULTS: After the intervention, percent body fat decreased in the training group, but increased in the control group. The relative changes in lean body mass, muscle thickness and muscular strength were similar between both groups. In the training group, the relative change in knee extension strength was correlated to the magnitude of maturation before the intervention. CONCLUSIONS: For adolescent girls, an 8-week body mass-based squat training is feasible for lowering percent body fat. In addition, the strength improvement for the knee extensors partially depends on the magnitude of maturation at start of the intervention.


Subject(s)
Body Composition/physiology , Muscle Strength/physiology , Muscle, Skeletal/physiology , Resistance Training , Adolescent , Female , Humans , Japan , Knee , Knee Joint , Resistance Training/methods , Thigh
8.
Photosynth Res ; 126(2-3): 437-47, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26149177

ABSTRACT

The major light-harvesting pigment protein complex (fucoxanthin-chlorophyll-binding protein complex; FCP) was purified from a marine centric diatom, Chaetoceros gracilis, by mild solubilization followed by sucrose density gradient centrifugation, and then characterized. The dynamic light scattering measurement showed unimodality, indicating that the complex was highly purified. The amount of chlorophyll a (Chl a) bound to the purified FCP accounted for more than 60 % of total cellular Chl a. The complex was composed of three abundant polypeptides, although there are nearly 30 FCP-related genes. The two major components were identified as Fcp3 (Lhcf3)- and Fcp4 (Lhcf4)-equivalent proteins based on their internal amino acid sequences and a two-dimensional isoelectric focusing electrophoresis analysis developed in this work. Compared with the thylakoids, the FCP complex showed higher contents of fucoxanthin and chlorophyll c but lower contents of the xanthophyll cycle pigments diadinoxanthin and diatoxanthin. Fluorescence excitation spectra analyses indicated that light harvesting, rather than photosystem protection, is the major function of the purified FCP complex, which is associated with more than 60 % of total cellular Chl a. These findings suggest that the huge amount of Chl bound to the FCP complex composed of Lhcf3, Lhcf4, and an unidentified minor protein has a light-harvesting function to allow efficient photosynthesis under the dim-light conditions in the ocean.


Subject(s)
Diatoms/metabolism , Xanthophylls/metabolism , Carrier Proteins/metabolism , Chlorophyll/metabolism , Chlorophyll A , Diatoms/radiation effects , Light , Light-Harvesting Protein Complexes/metabolism , Photosystem II Protein Complex/metabolism , Spectrometry, Fluorescence , Thylakoids/metabolism
9.
Neurosci Res ; 101: 6-14, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26188126

ABSTRACT

The postsynaptic density (PSD) is a protein complex that is critical for synaptic transmission. Ultrastructural changes in the PSD are therefore likely to modify synaptic functions. In this study, we investigated the ultrastructural changes in the PSD in the hippocampal CA1 stratum radiatum following neuronal excitation. Oxygen-glucose deprivation-induced PSD thickening in hippocampal slice cultures was blocked by the N-methyl-d-aspartate (NMDA) receptor antagonist MK801. To gain more insight into the mechanisms underlying NMDA receptor-mediated PSD thickening, we assessed the area, length, and thickness of the PSD after NMDA treatment. The PSDs thickened with just 2 min of NMDA receptor stimulation, and this treatment was considered sublethal. When N-acetyl-leucyl-leucyl-norleucinal, an inhibitor of calpain, cathepsins, and the proteasome, was applied, NMDA-induced PSD thickening was abolished. Furthermore, the calcium-induced calcium release inhibitor, ryanodine, reduced NMDA receptor-mediated PSD thickening. These results suggest that NMDA receptor activation induces PSD thickening by proteolysis through intracellular calcium increase, including that induced by calcium.


Subject(s)
CA1 Region, Hippocampal/physiology , CA1 Region, Hippocampal/ultrastructure , Neurons/physiology , Neurons/ultrastructure , Post-Synaptic Density/ultrastructure , Proteolysis , Receptors, N-Methyl-D-Aspartate/physiology , Animals , CA1 Region, Hippocampal/drug effects , Calcium Channel Blockers/pharmacology , Cell Hypoxia , Cells, Cultured , Dizocilpine Maleate/pharmacology , Female , Glucose/metabolism , Male , N-Methylaspartate/pharmacology , Post-Synaptic Density/drug effects , Rats, Sprague-Dawley , Receptors, N-Methyl-D-Aspartate/agonists , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors , Ryanodine/pharmacology , Ryanodine Receptor Calcium Release Channel/physiology
10.
J Physiol Anthropol ; 33: 30, 2014 Sep 19.
Article in English | MEDLINE | ID: mdl-25239758

ABSTRACT

BACKGROUND: The purpose of this study was to clarify the effect of maturation on the muscle quality of the lower limb muscles around puberty. METHODS: Subjects were 117 Japanese boys age 12 to 15 years. The maturity status was assessed by using a self-assessment of stage of pubic hair development based on the criteria of Tanner. On the basis of the criteria, subjects were divided into the prepubescent or pubescent group. Muscle thickness of knee extensors and plantar flexors were measured by a B-mode ultrasound. Muscle volume index (MV) was calculated from muscle thickness and limb length. Maximal voluntary isometric joint toques (TQ) of knee extension and ankle plantar flexion were measured using a myometer. Muscle quality was derived from dividing TQ by MV (TQ/MV). RESULTS: In both muscles, TQ-MV relationships were also similar between the prepubescent and pubescent groups, and there was no significant difference in TQ/MV between the two groups when chronological age was statistically adjusted. CONCLUSION: The current results indicate that, for adolescent boys, the muscle quality of the lower limb muscles is not significantly influenced by maturation.


Subject(s)
Lower Extremity/physiology , Muscle Strength/physiology , Sexual Maturation/physiology , Adolescent , Child , Humans , Japan , Linear Models , Male
11.
Plant Physiol ; 166(1): 337-48, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25056923

ABSTRACT

Lichens result from symbioses between a fungus and either a green alga or a cyanobacterium. They are known to exhibit extreme desiccation tolerance. We investigated the mechanism that makes photobionts biologically active under severe desiccation using green algal lichens (chlorolichens), cyanobacterial lichens (cyanolichens), a cephalodia-possessing lichen composed of green algal and cyanobacterial parts within the same thallus, a green algal photobiont, an aerial green alga, and a terrestrial cyanobacterium. The photosynthetic response to dehydration by the cyanolichen was almost the same as that of the terrestrial cyanobacterium but was more sensitive than that of the chlorolichen or the chlorobiont. Different responses to dehydration were closely related to cellular osmolarity; osmolarity was comparable between the cyanolichen and a cyanobacterium as well as between a chlorolichen and a green alga. In the cephalodium-possessing lichen, osmolarity and the effect of dehydration on cephalodia were similar to those exhibited by cyanolichens. The green algal part response was similar to those exhibited by chlorolichens. Through the analysis of cellular osmolarity, it was clearly shown that photobionts retain their original properties as free-living organisms even after lichenization.


Subject(s)
Chlorophyta/physiology , Lichens/physiology , Nostoc commune/physiology , Symbiosis , Water/physiology , Lichens/microbiology , Osmotic Pressure , Photosynthesis
12.
Microscopy (Oxf) ; 63(3): 227-34, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24586041

ABSTRACT

Postsynaptic density-95 (PSD-95) accumulates at excitatory postsynapses and plays important roles in the clustering and anchoring of numerous proteins at the PSD. However, a detailed ultrastructural analysis of clusters exclusively consisting of PSD-95 has never been performed. Here, we employed a genetically encoded tag, three tandem repeats of metallothionein (3MT), to study the structure of PSD-95 clusters in cells by electron tomography and cryo-electron microscopy of vitreous sections. We also performed conventional transmission electron microscopy (TEM). Cultured hippocampal neurons expressing a fusion protein of PSD-95 coupled to 3MT (PDS-95-3MT) were incubated with CdCl2 to result in the formation of Cd-bound PSD-95-3MT. Two types of electron-dense deposits composed of Cd-bound PSD-95-3MT were observed in these cells by TEM, as reported previously. Electron tomography revealed the presence of membrane-shaped structures representing PSD-95 clusters at the PSD and an ellipsoidal structure located in the non-synaptic cytoplasm. By TEM, the PSD-95 clusters appeared to be composed of a number of dense cores. In frozen hydrated sections, these dense cores were also found beneath the postsynaptic membrane. Taken together, our findings suggest that dense cores of PSD-95 aggregate to form the larger clusters present in the PSD and the non-synaptic cytoplasm.


Subject(s)
Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Membrane Proteins/ultrastructure , Metallothionein , Animals , Disks Large Homolog 4 Protein , Hippocampus/cytology , Intracellular Signaling Peptides and Proteins , Metallothionein/genetics , Microtomy , Rats , Recombinant Fusion Proteins/genetics , Tandem Repeat Sequences
13.
J Sports Sci Med ; 12(1): 60-5, 2013.
Article in English | MEDLINE | ID: mdl-24149726

ABSTRACT

The purpose of this study was to determine the effects of body mass-based squat training on body composition, muscular strength and motor fitness in adolescent boys. Ninety-four boys (13.7 ± 0.6 yrs, 1.60 ± 0.09 m, 50.2 ± 9.6 kg) participated in this study and were randomly assigned to training (n = 36) or control (n = 58) groups. The training group completed body mass-based squat exercise training (100 reps/day, 45 sessions) for 8 weeks. Body composition and muscle thickness at the thigh anterior were determined by a bioelectrical impedance analyzer and ultrasound apparatus, respectively. Maximal voluntary knee extension strength and sprint velocity were measured using static myometer and non-motorized treadmill, respectively. Jump height was calculated using flight time during jumping, which was measured by a matswitch system. The 8-wk body mass-based squat training significantly decreased percent body fat (4.2%) and significantly increased the lean body mass (2.7%), muscle thickness (3.2%) and strength of the knee extensors (16.0%), compared to control group. The vertical jump height was also significantly improved by 3.4% through the intervention. The current results indicate that body mass-based squat training for 8 weeks is a feasible and effective method for improving body composition and muscular strength of the knee extensors, and jump performance in adolescent boys. Key pointsAn 8-wk body mass-based squat exercise training decreased percent body fat in adolescent boys.The body mass-based squat exercise training increased muscle size and strength capability of the knee extensors in adolescent boys.The squat exercise training improves vertical jump height in adolescent boys.

14.
J Physiol Anthropol ; 32(1): 5, 2013 Mar 12.
Article in English | MEDLINE | ID: mdl-23497570

ABSTRACT

BACKGROUND: The purpose of this study was to examine maturity-related differences in anthropometry and body composition in Japanese youth within a single year. METHODS: Two hundred and ten Japanese youth aged from 13 to 13.99 years participated in this study. Their maturity status was assessed using a self-assessment of stage of pubic hair development. Bioelectrical impedance analysis was used to estimate percent body fat and lean body mass (LBM). Muscle thickness of the anterior thigh, posterior lower leg and rectus abdominis muscles were measured by ultrasound. RESULTS: For boys, height, body weight, and LBM in less mature groups were lower than that in more mature groups. The maturity-related differences were still significant after adjusting for chronological age. On the other hand, muscle thickness values in the lower extremity and abdomen differed among the groups at different stages of pubic hair development, whereas there was no maturity-related difference in the relative values corrected by LBM, except for those thickness values measured at the abdomen. For girls, only the muscle thickness at the anterior thigh and muscle thickness relative to LBM1/3 at the posterior lower leg was significantly affected by maturity status, but significant maturity-related difference was not found after adjusting for chronological age. CONCLUSIONS: At least for Japanese boys and girls aged 13 years, maturity status affected body size in boys, but not in girls, and the influence of maturation on the muscularity of the lower extremity and trunk muscles is less in both sexes.


Subject(s)
Adolescent Development/physiology , Anthropometry , Body Composition/physiology , Sexual Maturation/physiology , Adolescent , Analysis of Variance , Child , Cohort Studies , Female , Hair , Humans , Japan/epidemiology , Male , Self-Assessment , Sex Characteristics
15.
Hum Immunol ; 74(4): 433-8, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23276819

ABSTRACT

HLA-G, a natural immunosuppressant present in the human placenta during pregnancy, prevents fetal destruction by the maternal immune system. The immunosuppressive effect of HLA-G is mediated by the immune cell inhibitory receptors, LILRB1 and LILRB2. HLA-G forms disulfide-linked dimers by natural oxidation, and the dimer associates with LILRB1/B2 much more strongly than the monomer. Furthermore, the dimer formation remarkably enhanced the LILRB-mediated signaling. In this report, we studied the in vivo immunosuppressive effect of the HLA-G dimer, using the collagen-induced arthritis model mouse. Mice were treated with the HLA-G monomer or dimer intracutaneously at the left foot joint, once or for 5 days, and the clinical severity was evaluated daily in a double-blind study. The HLA-G monomer and dimer both produced excellent anti-inflammatory effects with a single, local administration. Notably, as compared to the monomer, the dimer exhibited significant immunosuppressive effects at lower concentrations, which persisted for about two months. In accordance with this result, a binding study revealed that the HLA-G dimer binds PIR-B, the mouse homolog of the LILRBs, with higher affinity and avidity than the monomer. The HLA-G dimer is expected to be quite useful as an anti-rheumatoid arthritis agent, in small amounts with minimal side effects.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , HLA-G Antigens/immunology , Immunosuppressive Agents/immunology , Joints/drug effects , Receptors, Immunologic/antagonists & inhibitors , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/immunology , Arthritis, Experimental/pathology , Arthritis, Rheumatoid/chemically induced , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/pathology , Collagen Type II , Disulfides/chemistry , HLA-G Antigens/administration & dosage , HLA-G Antigens/chemistry , Immune Tolerance/drug effects , Immunosuppressive Agents/administration & dosage , Immunosuppressive Agents/chemistry , Injections , Joints/immunology , Joints/pathology , Male , Mice , Mice, Inbred DBA , Protein Binding , Protein Multimerization , Receptors, Immunologic/immunology , Severity of Illness Index
16.
J Virol ; 87(4): 2253-63, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23236061

ABSTRACT

Pol283-8-specific, HLA-B*51:01-restricted, cytotoxic T cells (CTLs) play a critical role in the long-term control of HIV-1 infection. However, these CTLs select for the reverse transcriptase (RT) I135X escape mutation, which may be accumulating in circulating HIV-1 sequences. We investigated the selection of the I135X mutation by CTLs specific for the same epitope but restricted by HLA-B*52:01. We found that Pol283-8-specific, HLA-B*52:01-restricted CTLs were elicited predominantly in chronically HIV-1-infected individuals. These CTLs had a strong ability to suppress the replication of wild-type HIV-1, though this ability was weaker than that of HLA-B*51:01-restricted CTLs. The crystal structure of the HLA-B*52:01-Pol283-8 peptide complex provided clear evidence that HLA-B*52:01 presents the peptide similarly to HLA-B*51:01, ensuring the cross-presentation of this epitope by both alleles. Population level analyses revealed a strong association of HLA-B*51:01 with the I135T mutant and a relatively weaker association of HLA-B*52:01 with several I135X mutants in both Japanese and predominantly Caucasian cohorts. An in vitro viral suppression assay revealed that the HLA-B*52:01-restricted CTLs failed to suppress the replication of the I135X mutant viruses, indicating the selection of these mutants by the CTLs. These results suggest that the different pattern of I135X mutant selection may have resulted from the difference between these two CTLs in the ability to suppress HIV-1 replication.


Subject(s)
Epitopes, T-Lymphocyte/immunology , HIV-1/immunology , HIV-1/pathogenicity , Immune Evasion , Selection, Genetic , T-Lymphocytes, Cytotoxic/immunology , T-Lymphocytes, Cytotoxic/virology , Asian People , Epitopes, T-Lymphocyte/genetics , HIV Infections/immunology , HIV Infections/virology , HIV Reverse Transcriptase/genetics , HIV Reverse Transcriptase/metabolism , HIV-1/genetics , HLA-B51 Antigen/immunology , HLA-B51 Antigen/metabolism , HLA-B52 Antigen/immunology , HLA-B52 Antigen/metabolism , Humans , Mutant Proteins/genetics , Mutant Proteins/metabolism , Mutation, Missense , Protein Binding , White People
17.
Nat Commun ; 3: 1016, 2012.
Article in English | MEDLINE | ID: mdl-22910362

ABSTRACT

Dysfunction of PINK1, a mitochondrial Ser/Thr kinase, causes familial Parkinson's disease (PD). Recent studies have revealed that PINK1 is rapidly degraded in healthy mitochondria but accumulates on the membrane potential (ΔΨm)-deficient mitochondria, where it recruits another familial PD gene product, Parkin, to ubiquitylate the damaged mitochondria. Despite extensive study, the mechanism underlying the homeostatic control of PINK1 remains unknown. Here we report that PINK1 is autophosphorylated following a decrease in ΔΨm and that most disease-relevant mutations hinder this event. Mass spectrometric and mutational analyses demonstrate that PINK1 autophosphorylation occurs at Ser228 and Ser402, residues that are structurally clustered together. Importantly, Ala mutation of these sites abolishes autophosphorylation of PINK1 and inhibits Parkin recruitment onto depolarized mitochondria, whereas Asp (phosphorylation-mimic) mutation promotes mitochondrial localization of Parkin even though autophosphorylation was still compromised. We propose that autophosphorylation of Ser228 and Ser402 in PINK1 is essential for efficient mitochondrial localization of Parkin.


Subject(s)
Mitochondria/metabolism , Parkinson Disease/metabolism , Protein Kinases/metabolism , Ubiquitin-Protein Ligases/metabolism , Amino Acid Sequence , Animals , HeLa Cells , Humans , Membrane Potentials , Mice , Mitochondria/chemistry , Mitochondria/genetics , Molecular Sequence Data , Parkinson Disease/genetics , Phosphorylation , Protein Kinases/chemistry , Protein Kinases/genetics , Protein Transport , Sequence Alignment , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/genetics
18.
J Electron Microsc (Tokyo) ; 61(4): 229-36, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22508950

ABSTRACT

A cadmium-binding, genetically encoded protein tag, consisting of three repeats of metallothionein (3MT), can be used in electron microscopy for the visualization of multimeric- but not monomeric-tagged proteins due to insufficient electron density in monomeric proteins. Here, we present a technique for detecting monomeric 3MT-tagged green fluorescent protein (GFP-3MT) using a platinum compound to intensify the electron density. Substitution of cadmium by platinum as a result of incubating purified cadmium-binding 3MT-tagged GFP (GFP-Cd-3MT) with cis-diamminedichloroplatinum(II) (cisDDP) was assessed by a UV absorption band centered at 284 nm thereby indicating platinum-sulfhydryl bonds. The incubation time and the concentration of cisDDP to reach maximal absorption were 2 h and 36-fold molar equivalent of cisDDP, respectively. GFP-Pt-3MT isolated by gel filtration chromatography contained 29 platinum atoms per single GFP-3MT molecule. Electron-dense particles were observed in a GFP-Pt-3MT sample by electron microscopy without negative staining. Further image processing and image analysis demonstrated that particles with higher density relative to their surroundings were detectable in both GFP-Cd-3MT and GFP-Pt-3MT samples. These results demonstrate that replacement of cadmium with platinum, together with proper image analyses, improve detection efficiency and enable the visualization of 3MT-tagged monomeric protein by electron microscopy.


Subject(s)
Green Fluorescent Proteins/genetics , Metallothionein/genetics , Microscopy, Electron, Transmission/methods , Platinum/metabolism , Cadmium/metabolism , Cisplatin/metabolism , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/metabolism , Metallothionein/chemistry , Metallothionein/metabolism , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism
19.
Protein Sci ; 20(10): 1720-34, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21805523

ABSTRACT

Applications of the GFP-fusion technique have greatly facilitated evaluations of the amounts and qualities of sample proteins used for structural analyses. In this study, we applied the GFP-based sample evaluation to secreted protein expression by insect cells. We verified that a GFP variant, GFPuv, retains proper folding and monodispersity within all expression spaces in Sf9 cells, such as the cytosol, organelles, and even the extracellular space after secretion, and thus can serve as a proper folding reporter for recombinant proteins. We then applied the GFPuv-based system to the extracellular domains of class C G-protein coupled receptors (GPCRs) and examined their localization, folding, and oligomerization upon insect cell expression. The extracellular domain of metabotropic glutamate receptor 1 (mGluR1) exhibited good secreted expression by Sf9 cells, and the secreted proteins formed dimer with a monodisperse hydrodynamic state favorable for crystallization, consistent with the results from previous successful structural analyses. In contrast, the extracellular domains of sweet/umami taste receptors (T1R) almost completely remained in the cell. Notably, the T1R and mGluR1 subfractions that remained in the cellular space showed polydisperse hydrodynamic states with large aggregated fractions, without forming dimers. These results indicated that the proper folding and oligomerization of the extracellular domains of the class C GPCR are achieved through the secretory pathway.


Subject(s)
Green Fluorescent Proteins/metabolism , Insecta/cytology , Receptors, G-Protein-Coupled/metabolism , Recombinant Fusion Proteins/metabolism , Secretory Pathway , Animals , Cell Line , Gene Expression , Genes, Reporter , Green Fluorescent Proteins/genetics , Protein Structure, Tertiary , Receptors, G-Protein-Coupled/genetics , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Recombinant Fusion Proteins/genetics
20.
J Electron Microsc (Tokyo) ; 56(4): 119-29, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17956936

ABSTRACT

The subcellular localization of biomolecules at high resolution has traditionally been investigated by combining transmission electron microscopy (TEM) and chemical staining with heavy metals or immuno-based labeling with gold-conjugated antibodies. Here, we employ genetically encoded tags to examine the localization of proteins in transfected cultured cells by TEM. We purified a fusion protein of postsynaptic density-95 (PSD-95) coupled to three tandem repeats of metallothionein (MT) (PDS-95-3MT) from COS7 cells grown in the presence of Cd2+. PSD-95-3MT was detected as black particles by TEM. To visualize the subcellular localization of PSD-95-3MT, expression constructs encoding this fusion protein were transfected into primary hippocampal neurons cultured in medium containing Cd2+. The subcellular accumulation of PSD-95-3MT and Cd2+ provided excellent contrast in TEM micrographs. To address if genetically encoded tags affect the function of the target proteins, we found that the conjugation of 3MT to PSD-95 did not alter its association with known binding partners. These results demonstrate that 3MT coordinating Cd2+ is a valuable genetically encoded tag to study the localization of proteins by TEM.


Subject(s)
Membrane Proteins/ultrastructure , Metallothionein/ultrastructure , Animals , COS Cells , Cadmium/chemistry , Cadmium/toxicity , Cells, Cultured , Chlorocebus aethiops , Disks Large Homolog 4 Protein , Guanylate Kinases , Hippocampus/cytology , Hippocampus/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/chemistry , Membrane Proteins/genetics , Metallothionein/chemistry , Metallothionein/genetics , Mice , Microscopy, Electron, Transmission , Neurons/drug effects , Neurons/metabolism , Neurons/ultrastructure , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/ultrastructure , Tandem Repeat Sequences , Transfection
SELECTION OF CITATIONS
SEARCH DETAIL
...