Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Geoderma ; 3702020 Jul.
Article in English | MEDLINE | ID: mdl-36452276

ABSTRACT

The development of a robust method to non-invasively visualize root morphology in natural soils has been hampered by the opaque, physical, and structural properties of soils. In this work we describe a novel technology, low field magnetic resonance imaging (LF-MRI), for imaging energy sorghum (Sorghum bicolor (L.) Moench) root morphology and architecture in intact soils. The use of magnetic fields much weaker than those used with traditional MRI experiments reduces the distortion due to magnetic material naturally present in agricultural soils. A laboratory based LF-MRI operating at 47 mT magnetic field strength was evaluated using two sets of soil cores: 1) soil/root cores of Weswood silt loam (Udifluventic Haplustept) and a Belk clay (Entic Hapluderts) from a conventionally tilled field, and 2) soil/root cores from rhizotrons filled with either a Houston Black (Udic Haplusterts) clay or a sandy loam purchased from a turf company. The maximum soil water nuclear magnetic resonance (NMR) relaxation time T2 (4 ms) and the typical root water relaxation time T2 (100 ms) are far enough apart to provide a unique contrast mechanism such that the soil water signal has decayed to the point of no longer being detectable during the data collection time period. 2-D MRI projection images were produced of roots with a diameter range of 1.5-2.0 mm using an image acquisition time of 15 min with a pixel resolution of 1.74 mm in four soil types. Additionally, we demonstrate the use of a data-driven machine learning reconstruction approach, Automated Transform by Manifold Approximation (AUTOMAP) to reconstruct raw data and improve the quality of the final images. The application of AUTOMAP showed a SNR (Signal to Noise Ratio) improvement of two fold on average. The use of low field MRI presented here demonstrates the possibility of applying low field MRI through intact soils to root phenotyping and agronomy to aid in understanding of root morphology and the spatial arrangement of roots in situ.

2.
J Magn Reson ; 288: 95-99, 2018 03.
Article in English | MEDLINE | ID: mdl-29448233

ABSTRACT

Earth's field NMR has been developed to detect oil trapped under or in Arctic sea-ice. A large challenge, addressed here, is the suppression of the water signal that dominates the oil signal. Selective suppression of water is based on relaxation time T1 because of the negligible chemical shifts in the weak earth's magnetic field, making all proton signals overlap spectroscopically. The first approach is inversion-null recovery, modified for use with pre-polarization. The requirements for efficient inversion over a wide range of B1 and subsequent adiabatic reorientation of the magnetization to align with the static field are stressed. The second method acquires FIDs at two durations of pre-polarization and cancels the water component of the signal after the data are acquired. While less elegant, this technique imposes no stringent requirements. Similar water suppression is found in simulations for the two methods. Oil detection in the presence of water is demonstrated experimentally with both techniques.

3.
J Magn Reson ; 288: 23-27, 2018 03.
Article in English | MEDLINE | ID: mdl-29414060

ABSTRACT

Adiabatic NMR sweep pulses are described for inversion and excitation in very low magnetic fields B0 and with broad distribution of excitation field amplitude B1. Two aspects distinguish the low field case: (1) when B1 is comparable to or greater than B0, the rotating field approximation fails and (2) inversion sweeps cannot extend to values well below the Larmor frequency because they would approach or pass through zero frequency. Three approaches to inversion are described. The first is a conventional tangent frequency sweep down to the Larmor frequency, a 180° phase shift, and a sweep back up to the starting frequency. The other two are combined frequency and amplitude sweeps covering a narrower frequency range; one is a symmetric sweep from above to below the Larmor frequency and the other uses a smooth decrease of B1 immediately before and after the 180° phase shift. These two AM/FM sweeps show excellent inversion efficiencies over a wide range of B1, a factor of 30 or more. We also demonstrate an excitation sweep that works well in the presence of the same wide range of B1. We show that the primary effect of the counter-rotating field (i.e., at low B0) is that the magnetization suffers large, periodic deviations from where it would be at large B0. Thus, successful sweep pulses must avoid any sharp features in the amplitude, phase, or frequency.

4.
J Magn Reson ; 282: 104-113, 2017 09.
Article in English | MEDLINE | ID: mdl-28797924

ABSTRACT

Unilateral NMR can examine samples without regard to sample size. It is also an easy path to mobile or portable NMR as well as inexpensive NMR. The objective of this work was to develop unilateral NMR with an improved performance in a sample region that was remote from the apparatus. This was accomplished with the creation of a saddle point where all second derivatives of the main component of the field were nulled. A ∼10cm diameter ∼5cm thick magnet combined with a gradiometer coil on the surface detected signals from a sensitive region that extended ∼2cm from the magnet. The relatively homogeneous field of these unilateral NMR devices allows the measurement of rapidly diffusing spins as well as the use of smaller RF amplifiers, which enhances system mobility.

5.
J Magn Reson ; 281: 241-245, 2017 08.
Article in English | MEDLINE | ID: mdl-28646695

ABSTRACT

The sensitivity of earth's field NMR is greatly increased by the use of a pre-polarizing field Bp. When used with short T1 samples, the field must be decreased rapidly to avoid loss of the pre-polarized magnetization by relaxation. Such a rapid decrease in the field requires rapid discharge (∼10ms) of a large stored magnetic field energy (∼700J). In addition, in order that the full pre-polarized magnetization be available for the subsequent pulse sequence, the field discharge should be adiabatic. This requirement is difficult to fulfill in cases where Bp is not everywhere parallel to the earth's field, such as with a large surface coil. Circuitry for rapid and controlled discharge is presented. Simulations and experiments confirm the importance of both of these conditions.

6.
Magn Reson Med ; 57(6): 1058-64, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17534926

ABSTRACT

MR images of laboratory rat lungs that resolve the thin membranes that separate lung lobes are presented. It appears that the capabilities of in vivo small-animal pulmonary MRI may rival those of in vivo small-animal X-ray CT. Free induction decay (FID)-projection imaging was employed with particular attention to the choice of acquisition time. For a given nominal resolution, one obtains optimal point discrimination when the acquisition time T(acq) normalized by the signal decay time constant T(2)(*) is approximately 0.8-0.9, although a better signal-to-noise ratio (SNR) is obtained when this quotient is 1.6. Currently available equipment should be able to even exceed the results presented herein.


Subject(s)
Image Processing, Computer-Assisted/methods , Lung/anatomy & histology , Magnetic Resonance Imaging/methods , Animals , Imaging, Three-Dimensional , Rats , Signal Processing, Computer-Assisted
7.
Magn Reson Imaging ; 21(3-4): 201-5, 2003.
Article in English | MEDLINE | ID: mdl-12850708

ABSTRACT

Three examples of thermally polarized gas NMR performed at New Mexico Resonance are presented to demonstrate its unique advantages in porous media studies. 1) In-vivo animal lung imaging by Kuethe et al., in which useful quality 3D images of rat lungs were obtained in 30 min. It is conjectured that comparable human lung images would take much less time to make, possibly by the ratio of body weights, a factor of several hundred. 2) The success of the lung imaging suggested other porous media as candidates for thermally polarized gas NMR. Caprihan and coworkers obtained excellent images from partially sintered ceramics and Vycor glass. Since then, Beyea has developed the technique of spatially resolved BET curves for ceramics and other nanoporous solids. In this way, surface area, pore size, and porosity, averaged over an image voxel, can be spatially resolved. This greatly aids in the characterization of such materials, especially with regards to spatial heterogeneities. 3) Finally, we describe Codd's propagator experiments on propane gas flowing through a packed bed of 300 microm beads. In order to increase signal-to-noise ratio, the flowing gas was pressurized to 170 kPa. Excellent quality propagators showing the discrete nature of the bead pack were obtained. This type of information is not available in comparable liquid studies because most spins will not diffuse far enough to sample the walls in the time available.


Subject(s)
Lung/anatomy & histology , Magnetic Resonance Spectroscopy/methods , Animals , Ceramics , Gases , Imaging, Three-Dimensional , Porosity , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...