Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Biophys Rep ; 32: 101385, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36386443

ABSTRACT

Radiotherapy (RT) for head and neck cancer results in irreversible damage to salivary glands (SGs) and decreases saliva production, leading to a dry mouth. To date, there are no satisfactory therapies to solve this problem. We recently established a novel culturing method using a Rho kinase inhibitor (RI), Y-27632, that maintained cellular morphology and function for a prolonged period of time. In the present study, we investigated whether cell-based transplantation using our culturing method ameliorated the dysfunction of irradiated SGs. First, rat SG cells were cultured in a medium with RI. Cells were characterized by morphological findings and mRNA expression analysis. We also assessed features of SG cells in three-dimensional (3-D) culture by scanning electron microscopy and immunohistochemistry (IHC). The RI-containing medium led to higher cell proliferation of rat SG cells with preservation of cell morphology and higher alpha-amylase (AMY) expression in both 2-D and 3-D culture systems. To establish the atrophic-SG models, external RT at a dose of 15 Gy was delivered to the head and neck fields of nude rats. The SG cells derived from GFP-rats were cultured in medium with RI, after which they were transplanted into the submandibular glands of atrophic-SG rats using a catheter placed into Wharton's duct. IHC and salivary flow rate (SFR) analyses were measured 12 weeks after the transplantation. Following transplantation, donor cells (GFP-SG cells) were primarily located in the ductal region of the SG, and AMY expression in SGs and the SFR were increased in the SG cell transplantation group compared with the control. Those data indicated that cell-based therapy using RI-treated SG cells could restore salivary hypofunction of irradiated SGs by direct integration of the donor cells in the duct of SGs. We propose that these data support future clinical plans in which SG cells would be excised from the labial minor SGs of the patients with head and neck cancers prior to RT, cultured during RT, and auto-transplanted into SGs using a catheter into the Wharton's duct. We believe that our culturing and transplantation methods can be applied to SG cells, constituting a therapeutic approach for the treatment of patients with dry mouth after not only RT but also aging and Sjögren's syndrome.

2.
Oncol Rep ; 47(1)2022 Jan.
Article in English | MEDLINE | ID: mdl-34738627

ABSTRACT

The epithelial­stromal interaction 1 gene (EPSTI1) is known to play multiple roles in the malignant progression of breast cancer and also in some aspects of the immune responses to the tumor. However, the relevance of the gene in the onset/progression of oral squamous cell carcinoma (OSCC) and lung squamous cell carcinoma (LSCC) is not yet known. The present study was aimed at revealing the roles of EPSTI1 in conferring malignant characteristics to OSCC and LSCC, and the underlying mechanisms. Quantitative real­time polymerase chain reaction (PCR) and western blot analyses demonstrated significant upregulation of EPSTI1 in all four OSCC cell lines (HSC2, HSC3, HSC3­M3 and HSC4), and significant downregulation of EPST11 in all three LSCC cell lines (LK­2, EBC­1 and H226) used in the present study, as compared to the expression levels in the corresponding control cell lines. Both knockdown of EPST11 in OSCC and overexpression of the gene in LSCC suppressed cell proliferation, and induced cell­cycle arrest in the G1 phase, with upregulation of p21 and downregulation of CDK2 and cyclin D1. Furthermore, these alterations of EPST11 gene expression in the OSCC and LSCC cell lines suppressed the cell migration ability and reversed the EMT phenotype of the tumor cells. Collectively, while EPSTI1 appears to have oncogenic roles in OSCC, it appears to exert tumor­suppressive roles in LSCC. PCR array analyses revealed some genes whose expression levels were altered along with the modified EPSTI1 expression in both the OSCC and LSCC cell lines. These findings suggest that EPSTI1 may be a therapeutic target for both OSCC and LSCC.


Subject(s)
Head and Neck Neoplasms/genetics , Lung Neoplasms/genetics , Neoplasm Proteins/genetics , Squamous Cell Carcinoma of Head and Neck/genetics , Cell Cycle/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation , Gene Expression Regulation, Neoplastic , Humans , Up-Regulation
3.
Cancers (Basel) ; 13(22)2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34830863

ABSTRACT

Circular RNAs (circRNAs), which form as covalently closed loop structures, have several biological functions such as regulation of cellular behavior by adsorbing microRNAs. However, there is limited information of circRNAs in oral squamous cell carcinoma (OSCC). Here, we aimed to elucidate the roles of aberrantly expressed circRNAs in OSCC. CircRNA microarray showed that circRNA-102450 was down-regulated in OSCC cells. Clinical validation of circRNA-102450 was performed using highly sensitive droplet digital PCR in preoperative liquid biopsy samples from 30 OSCC patients. Interestingly, none of 16 studied patients with high circRNA-102450 had regional lymph node metastasis (RLNM), whereas 4 of 14 studied patients (28.5%) with low expression had pathologically proven RLNM. Overexpressed circRNA-102450 significantly inhibited the tumor metastatic properties of cell proliferation, migration, and invasion. Furthermore, circRNA-102450 directly bound to, and consequently down-regulated, miR-1178 in OSCC cells. Taken together, circRNA-102450 has a tumor suppressive effect via the circRNA-102450/miR-1178 axis and may be a novel potential marker of RLNM in OSCC patients.

4.
Exp Cell Res ; 384(2): 111622, 2019 11 15.
Article in English | MEDLINE | ID: mdl-31518558

ABSTRACT

Tetraspanin 15 (Tspan15) is a member of the tetraspanin family, which is associated with various biological events and several diseases, however, its role in human oral squamous cell carcinoma (OSCC) remains unknown. The current study aimed to clarify the role of Tspan15 in OSCC. The mRNA and protein expression levels of Tspan15 were up-regulated in OSCC cases and OSCC-derived cell lines. Significant up-regulated Tspan15 expression was found in the advanced OSCC cases; primary tumoral size (P = 0.042), regional lymph node metastasis (P = 0.036) and TNM classification (P = 0.024). The decreased expression of Tspan15 did not significantly affect cellular proliferation, whereas tumoral invasion and migration activities were suppressed in Tspan15-down-regulated cells, suggesting that Tspan15 might activate metastasis-related signaling. Moreover, in the Tspan15-down-regulated cells, the expression of a disintegrin and metalloproteinase (ADAM) 10 was also down-regulated and the cells secreted less soluble N-cadherin compared with control cells. And weak immunoreactivity of ß-catenin in the nucleus was detected in Tspan15-down-regulated cells compared with the control cells. These findings suggested that overexpression of Tspan15 positively regulates development of OSCC, and that ADAM10, N-cadherin, ß-catenin might be involved in the Tspan15-mediated pathway. These unusual conditions of cell adhesion molecules may lead to high metastasis rate found in Tspan15-overexpressing cases.


Subject(s)
Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Mouth Neoplasms/genetics , Mouth Neoplasms/pathology , Neoplasm Metastasis/genetics , Tetraspanins/genetics , ADAM10 Protein/genetics , Cadherins/genetics , Cell Adhesion Molecules/genetics , Cell Line , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Down-Regulation/genetics , Humans , Lymphatic Metastasis/genetics , Lymphatic Metastasis/pathology , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Metastasis/pathology , Signal Transduction/genetics , Up-Regulation/genetics , beta Catenin/genetics
5.
J Cancer ; 9(18): 3326-3333, 2018.
Article in English | MEDLINE | ID: mdl-30271493

ABSTRACT

Translocation associated membrane protein 2 (TRAM2) has been characterized as a component of the translocon that is a gated channel at the endoplasmic reticulum (ER) membrane. TRAM2 is expressed in a wide variety of human organs. To date, no information is available regarding TRAM2 function in the genesis of human cancer. The purpose of this study was to investigate the status of the TRAM2 gene in oral squamous cell carcinoma (OSCC) cells and clinical OSCC samples. Using real-time quantitative reverse transcriptase-polymerase chain reaction, Western blotting analysis, and immunohistochemistry, we detected accelerated TRAM2 mRNA and protein expression levels both in OSCC-derived cell lines and primary tumors. Moreover, TRAM2-positive OSCC tissues were correlated closely (P<0.05) with metastasis to regional lymph nodes and vascular invasiveness. Of note, knockdown of TRAM2 inhibited metastatic phenotypes, including siTRAM2 cellular migration, invasiveness, and transendothelial migration activities with a significant (P<0.05) decrease in protein kinase RNA(PKR) - like ER kinase (PERK) and matrix metalloproteinases (MMPs) (MT1-MMP, MMP2, and MMP9). Taken together, our results suggested that TRAM2 might play a pivotal role in OSCC cellular metastasis by controlling major MMPs. This molecule might be a putative therapeutic target for OSCC.

SELECTION OF CITATIONS
SEARCH DETAIL
...