Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
1.
Cells ; 13(8)2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38667286

ABSTRACT

Ischemic stroke is a major cerebrovascular disease with high morbidity and mortality rates; however, effective treatments for ischemic stroke-related neurological dysfunction have yet to be developed. In this study, we generated neural progenitor cells from human leukocyte antigen major loci gene-homozygous-induced pluripotent stem cells (hiPSC-NPCs) and evaluated their therapeutic effects against ischemic stroke. hiPSC-NPCs were intracerebrally transplanted into rat ischemic brains produced by transient middle cerebral artery occlusion at either the subacute or acute stage, and their in vivo survival, differentiation, and efficacy for functional improvement in neurological dysfunction were evaluated. hiPSC-NPCs were histologically identified in host brain tissues and showed neuronal differentiation into vGLUT-positive glutamatergic neurons, extended neurites into both the ipsilateral infarct and contralateral healthy hemispheres, and synaptic structures formed 12 weeks after both acute and subacute stage transplantation. They also improved neurological function when transplanted at the subacute stage with γ-secretase inhibitor pretreatment. However, their effects were modest and not significant and showed a possible risk of cells remaining in their undifferentiated and immature status in acute-stage transplantation. These results suggest that hiPSC-NPCs show cell replacement effects in ischemic stroke-damaged neural tissues, but their efficacy is insufficient for neurological functional improvement after acute or subacute transplantation. Further optimization of cell preparation methods and the timing of transplantation is required to balance the efficacy and safety of hiPSC-NPC transplantation.


Subject(s)
Cell Differentiation , Induced Pluripotent Stem Cells , Ischemic Stroke , Neural Stem Cells , Synapses , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Humans , Animals , Neural Stem Cells/metabolism , Neural Stem Cells/transplantation , Neural Stem Cells/cytology , Ischemic Stroke/pathology , Ischemic Stroke/therapy , Rats , Synapses/metabolism , Male , Neurites/metabolism , Brain/pathology , Brain Ischemia/therapy , Brain Ischemia/pathology , Neurons/metabolism , Neurons/pathology , Rats, Sprague-Dawley , Stroke/therapy , Stroke/pathology
2.
Stem Cell Res ; 69: 103122, 2023 06.
Article in English | MEDLINE | ID: mdl-37209469

ABSTRACT

Infantile neuroaxonal dystrophy (INAD) is a rare neurodegenerative disease caused mainly by homozygous or compound heterozygous mutations in the PLA2G6 gene. We generated a human induced pluripotent stem cell (hiPSC) line (ONHi001-A) using fibroblasts derived from a patient with INAD. The patient exhibited c.517C > T (p.Q173X) and c.1634A > G (p.K545R) compound heterozygous mutations in the PLA2G6 gene. This hiPSC line may be useful for studying the pathogenic mechanism underlying INAD.


Subject(s)
Induced Pluripotent Stem Cells , Neuroaxonal Dystrophies , Neurodegenerative Diseases , Humans , Induced Pluripotent Stem Cells/pathology , Neurodegenerative Diseases/genetics , Mutation/genetics , Homozygote , Neuroaxonal Dystrophies/genetics , Neuroaxonal Dystrophies/pathology , Group VI Phospholipases A2/genetics
4.
Neurochem Res ; 47(9): 2668-2682, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35347634

ABSTRACT

Mammalian axon growth has mechanistic similarities with axon regeneration. The growth cone is an important structure that is involved in both processes, and GAP-43 (growth associated protein-43 kDa) is believed to be the classical molecular marker. Previously, we used growth cone phosphoproteomics to demonstrate that S96 and T172 of GAP-43 in rodents are highly phosphorylated sites that are phosphorylated by c-jun N-terminal protein kinase (JNK). We also revealed that phosphorylated (p)S96 and pT172 antibodies recognize growing axons in the developing brain and regenerating axons in adult peripheral nerves. In rodents, S142 is another putative JNK-dependent phosphorylation site that is modified at a lower frequency than S96 and T172. Here, we characterized this site using a pS142-specific antibody. We confirmed that pS142 was detected by co-expressing mouse GAP-43 and JNK1. pS142 antibody labeled growth cones and growing axons in developing mouse neurons. pS142 was sustained until at least nine weeks after birth in mouse brains. The pS142 antibody could detect regenerating axons following sciatic nerve injury in adult mice. Comparison of amino acid sequences indicated that rodent S142 corresponds to human S151, which is predicted to be a substrate of the MAPK family, which includes JNK. Thus, we confirmed that the pS142 antibody recognized human phospho-GAP-43 using activated JNK1, and also that its immunostaining pattern in neurons differentiated from human induced pluripotent cells was similar to those observed in mice. These results indicate that the S142 residue is phosphorylated by JNK1 and that the pS142 antibody is a new candidate molecular marker for axonal growth in both rodents and human.


Subject(s)
Axons , Mitogen-Activated Protein Kinase 8/metabolism , Nerve Regeneration , Animals , Axons/metabolism , GAP-43 Protein/metabolism , Humans , JNK Mitogen-Activated Protein Kinases/metabolism , Mammals/metabolism , Mice , Nerve Regeneration/physiology , Phosphorylation , Serine/metabolism
5.
Mol Brain ; 14(1): 149, 2021 10 11.
Article in English | MEDLINE | ID: mdl-34629097

ABSTRACT

The generation of mature synaptic structures using neurons differentiated from human-induced pluripotent stem cells (hiPSC-neurons) is expected to be applied to physiological studies of synapses in human cells and to pathological studies of diseases that cause abnormal synaptic function. Although it has been reported that synapses themselves change from an immature to a mature state as neurons mature, there are few reports that clearly show when and how human stem cell-derived neurons change to mature synaptic structures. This study was designed to elucidate the synapse formation process of hiPSC-neurons. We propagated hiPSC-derived neural progenitor cells (hiPSC-NPCs) that expressed localized markers of the ventral hindbrain as neurospheres by dual SMAD inhibition and then differentiated them into hiPSC-neurons in vitro. After 49 days of in vitro differentiation, hiPSC-neurons significantly expressed pre- and postsynaptic markers at both the transcript and protein levels. However, the expression of postsynaptic markers was lower than in normal human or normal rat brain tissues, and immunostaining analysis showed that it was relatively modest and was lower than that of presynaptic markers and that its localization in synaptic structures was insufficient. Neurophysiological analysis using a microelectrode array also revealed that no synaptic activity was generated on hiPSC-neurons at 49 days of differentiation. Analysis of subtype markers by immunostaining revealed that most hiPSC-neurons expressed vesicular glutamate transporter 2 (VGLUT2). The presence or absence of NGF, which is required for the survival of cholinergic neurons, had no effect on their cell fractionation. These results suggest that during the synaptogenesis of hiPSC-neurons, the formation of presynaptic structures is not the only requirement for the formation of postsynaptic structures and that the mRNA expression of postsynaptic markers does not correlate with the formation of their mature structures. Technically, we also confirmed a certain level of robustness and reproducibility of our neuronal differentiation method in a multicenter setting, which will be helpful for future research. Synapse formation with mature postsynaptic structures will remain an interesting issue for stem cell-derived neurons, and the present method can be used to obtain early and stable quality neuronal cultures from hiPSC-NPCs.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Neural Stem Cells/cytology , Neurogenesis , Animals , Biomarkers , Cell Culture Techniques/methods , Cell Line , Hippocampus/cytology , Humans , Induced Pluripotent Stem Cells/drug effects , Nerve Growth Factor/pharmacology , Nerve Tissue Proteins/analysis , Neural Stem Cells/ultrastructure , Neurons/chemistry , Neurons/classification , Neurons/cytology , Neuropeptides/analysis , Presynaptic Terminals/ultrastructure , RNA, Messenger/biosynthesis , RNA, Messenger/genetics , Rats , Reproducibility of Results , Synapses/physiology , Vesicular Glutamate Transport Protein 1/analysis , Vesicular Glutamate Transport Protein 2/analysis
6.
FEBS Open Bio ; 11(2): 354-366, 2021 02.
Article in English | MEDLINE | ID: mdl-33301617

ABSTRACT

Parkinson's disease (PD) is a neurodegenerative disorder caused by the selective loss of dopaminergic (DA) neurons in the substantia nigra pars compacta (SNc). Lewy bodies (LBs), another histological hallmark of PD, are observed in patients with familial or sporadic PD. The therapeutic potential of reducing the accumulation of α-synuclein, a major LB component, has been investigated, but it remains unknown whether the formation of LBs results in the loss of DA neurons. PARK4 patients exhibit multiplication of the α-synuclein gene (SNCA) without any pathological mutations, but their symptoms develop relatively early. Therefore, study of PARK4 might help elucidate the mechanism of α-synuclein aggregation. In this study, we investigated the dynamics of α-synuclein during the early stage of immature DA neurons, which were differentiated from human-induced pluripotent stem cells (hiPSCs) derived from either a PARK4 patient with SNCA triplication or a healthy donor. We observed increased α-synuclein accumulation in PARK4 hiPSC-derived DA neurons relative to those derived from healthy donor hiPSCs. Interestingly, α-synuclein accumulation disappeared over time in the PARK4 patient-derived DA neurons. Moreover, an SNCA-specific antisense oligonucleotide could reduce α-synuclein levels during the accumulation stage. These observations may help reveal the mechanisms that regulate α-synuclein levels, which may consequently be useful in the development of new therapies for patients with sporadic or familial PD.


Subject(s)
Dopaminergic Neurons/metabolism , Lewy Body Disease/pathology , Parkinson Disease/pathology , alpha-Synuclein/deficiency , Cell Differentiation , Cells, Cultured , DNA Copy Number Variations , Dopaminergic Neurons/drug effects , Gene Duplication , Healthy Volunteers , Humans , Induced Pluripotent Stem Cells , Lewy Body Disease/genetics , Parkinson Disease/genetics , Primary Cell Culture , alpha-Synuclein/antagonists & inhibitors , alpha-Synuclein/genetics , alpha-Synuclein/metabolism
7.
J Pharmacol Sci ; 140(4): 331-336, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31501056

ABSTRACT

Various chemicals, including pharmaceuticals, can induce acute or delayed neurotoxicity in humans. Because isolation of human primary neurons is extremely difficult, toxicity tests for these agents have been performed using in vivo or in vitro models. Human induced pluripotent stem cells (hiPSCs) can be used to establish hiPSC-derived neural stem/progenitor cells (hiPSC-NSPCs), which can then be used to obtain hiPSC-neurons. In this study, we differentiated hiPSC-NSPCs into neurons and evaluated the susceptibility of hiPSC-neurons and parental hiPSC-NSPCs to anticancer drugs in vitro by ATP assay and immunocytostaining. The hiPSC-neurons were more resistant to anticancer drugs than the parental hiPSC-NSPCs. In the toxicity tests, high-dose cisplatin reduced the levels of ELAVL3/4, a neuronal marker, in the hiPSC-neurons. These results suggest that our methodology is potentially applicable for efficient determination of the toxicity of any drug to hiPSC-neurons.


Subject(s)
Antineoplastic Agents/pharmacology , Induced Pluripotent Stem Cells/drug effects , Neurons/drug effects , Cell Culture Techniques/methods , Cell Differentiation/drug effects , Cells, Cultured , Humans , Neural Stem Cells
8.
PeerJ ; 6: e4187, 2018.
Article in English | MEDLINE | ID: mdl-29312819

ABSTRACT

Since the development of human-induced pluripotent stem cells (hiPSCs), various types of hiPSC-derived cells have been established for regenerative medicine and drug development. Neural stem/progenitor cells (NSPCs) derived from hiPSCs (hiPSC-NSPCs) have shown benefits for regenerative therapy of the central nervous system. However, owing to their intrinsic proliferative potential, therapies using transplanted hiPSC-NSPCs carry an inherent risk of undesired growth in vivo. Therefore, it is important to find cytotoxic drugs that can specifically target overproliferative transplanted hiPSC-NSPCs without damaging the intrinsic in vivo stem-cell system. Here, we examined the chemosensitivity of hiPSC-NSPCs and human neural tissue-derived NSPCs (hN-NSPCs) to the general anticancer drugs cisplatin, etoposide, mercaptopurine, and methotrexate. A time-course analysis of neurospheres in a microsphere array identified cisplatin and etoposide as fast-acting drugs, and mercaptopurine and methotrexate as slow-acting drugs. Notably, the slow-acting drugs were eventually cytotoxic to hiPSC-NSPCs but not to hN-NSPCs, a phenomenon not evident in the conventional endpoint assay on day 2 of treatment. Our results indicate that slow-acting drugs can distinguish hiPSC-NSPCs from hN-NSPCs and may provide an effective backup safety measure in stem-cell transplant therapies.

9.
Anticancer Res ; 37(7): 3921-3932, 2017 07.
Article in English | MEDLINE | ID: mdl-28668896

ABSTRACT

In this clinical study, we investigated the safety and clinical usefulness of systemic adoptive immunotherapy using autologous lymphokine-activated αß T-cells (αß T-cells), combined with standard therapies, in patients with malignant brain tumors. Twenty-three patients with different malignant brain tumors, consisting of 14 treated with temozolomide (TMZ group) and 9 treated without temozolomide (non-TMZ group), received systemic intravenous injections of αß T-cells (mean=10.4 injections/patient for the TMZ group, and 4.78 for the non-TMZ group). No significant adverse effects associated with the αß T-cell injection were observed, and the total lymphocyte count (TLC) improved significantly in the TMZ group after five injections. Furthermore, CD8-positive or T-cell receptor V gamma -positive cells were increased with TLC in three patients with glioblastoma multiforme. These findings suggest that systemic αß T-cell immunotherapy is well tolerated, and may help restore an impaired and imbalanced T-cell immune status, and temozolomide- and/or radiotherapy-induced lymphopenia. Future prospective study is needed to clarify the clinical merits of this immunotherapy.


Subject(s)
Brain Neoplasms/drug therapy , Dacarbazine/analogs & derivatives , Glioma/drug therapy , Lymphopenia/prevention & control , T-Lymphocyte Subsets/transplantation , Administration, Intravenous , Adolescent , Adult , Aged , Brain Neoplasms/immunology , Cell Line, Tumor , Child , Dacarbazine/adverse effects , Dacarbazine/therapeutic use , Female , Glioma/immunology , Humans , Immunotherapy, Adoptive , Male , Middle Aged , Prospective Studies , Temozolomide , Transplantation, Autologous , Treatment Outcome , Young Adult
10.
Mol Brain ; 9(1): 85, 2016 09 19.
Article in English | MEDLINE | ID: mdl-27642008

ABSTRACT

The risk of tumorigenicity is a hurdle for regenerative medicine using induced pluripotent stem cells (iPSCs). Although teratoma formation is readily distinguishable, the malignant transformation of iPSC derivatives has not been clearly defined due to insufficient analysis of histology and phenotype. In the present study, we evaluated the histology of neural stem/progenitor cells (NSPCs) generated from integration-free human peripheral blood mononuclear cell (PBMC)-derived iPSCs (iPSC-NSPCs) following transplantation into central nervous system (CNS) of immunodeficient mice. We found that transplanted iPSC-NSPCs produced differentiation patterns resembling those in embryonic CNS development, and that the microenvironment of the final site of migration affected their maturational stage. Genomic instability of iPSCs correlated with increased proliferation of transplants, although no carcinogenesis was evident. The histological classifications presented here may provide cues for addressing potential safety issues confronting regenerative medicine involving iPSCs.


Subject(s)
Central Nervous System Diseases/therapy , Induced Pluripotent Stem Cells/pathology , Neural Stem Cells/pathology , Stem Cell Transplantation/adverse effects , Animals , Cell Differentiation , Cell Line , Cell Proliferation , Central Nervous System Diseases/pathology , Genomic Instability , Humans , Induced Pluripotent Stem Cells/transplantation , Karyotype , Mice, SCID , Models, Biological , Neural Stem Cells/transplantation , Registries
11.
Stem Cells Int ; 2016: 7235757, 2016.
Article in English | MEDLINE | ID: mdl-27212953

ABSTRACT

Human neural progenitor cells (hNPCs) have previously been generated from limited numbers of human induced pluripotent stem cell (hiPSC) clones. Here, 21 hiPSC clones derived from human dermal fibroblasts, cord blood cells, and peripheral blood mononuclear cells were differentiated using two neural induction methods, an embryoid body (EB) formation-based method and an EB formation method using dual SMAD inhibitors (dSMADi). Our results showed that expandable hNPCs could be generated from hiPSC clones with diverse somatic tissue origins. The established hNPCs exhibited a mid/hindbrain-type neural identity and uniform expression of neural progenitor genes.

12.
PLoS One ; 8(1): e55226, 2013.
Article in English | MEDLINE | ID: mdl-23383118

ABSTRACT

Human ES cells (hESCs) and human induced pluripotent stem cells (hiPSCs) are usually generated and maintained on living feeder cells like mouse embryonic fibroblasts or on a cell-free substrate like Matrigel. For clinical applications, a quality-controlled, xenobiotic-free culture system is required to minimize risks from contaminating animal-derived pathogens and immunogens. We previously reported that the pericellular matrix of decidua-derived mesenchymal cells (PCM-DM) is an ideal human-derived substrate on which to maintain hiPSCs/hESCs. In this study, we examined whether PCM-DM could be used for the generation and long-term stable maintenance of hiPSCs. Decidua-derived mesenchymal cells (DMCs) were reprogrammed by the retroviral transduction of four factors (OCT4, SOX2, KLF4, c-MYC) and cultured on PCM-DM. The established hiPSC clones expressed alkaline phosphatase, hESC-specific genes and cell-surface markers, and differentiated into three germ layers in vitro and in vivo. At over 20 passages, the hiPSCs cultured on PCM-DM held the same cellular properties with genome integrity as those at early passages. Global gene expression analysis showed that the GDF3, FGF4, UTF1, and XIST expression levels varied during culture, and GATA6 was highly expressed under our culture conditions; however, these gene expressions did not affect the cells' pluripotency. PCM-DM can be conveniently prepared from DMCs, which have a high proliferative potential. Our findings indicate that PCM-DM is a versatile and practical human-derived substrate that can be used for the feeder-cell-free generation and long-term stable maintenance of hiPSCs.


Subject(s)
Cell Culture Techniques/methods , Decidua/cytology , Embryonic Stem Cells/cytology , Extracellular Matrix/metabolism , Mesenchymal Stem Cells/metabolism , Pluripotent Stem Cells/cytology , Analysis of Variance , Cell Differentiation/physiology , Female , Flow Cytometry , Gene Expression Profiling , Humans , Immunohistochemistry , Karyotyping , Kruppel-Like Factor 4 , Kruppel-Like Transcription Factors/genetics , Microarray Analysis , Octamer Transcription Factor-3/genetics , Proto-Oncogene Proteins c-myc/genetics , Reverse Transcriptase Polymerase Chain Reaction , SOXB1 Transcription Factors/genetics , Sequence Analysis, DNA , Statistics, Nonparametric , Transduction, Genetic
13.
Neuroreport ; 24(2): 84-90, 2013 Jan 23.
Article in English | MEDLINE | ID: mdl-23238165

ABSTRACT

In vitro, human neural stem cells can be selectively expanded from fetal or adult neural tissues as neurospheres consisting of immature neural progenitor cells. Access to human neural tissues is limited, making it difficult to propagate and use primary neural stem or progenitor cells (NSPCs) from human neural tissues (hN-NSPCs). It was recently demonstrated that hN-NSPCs can be differentiated from either human embryonic stem cells (hESC-NSPCs) or human-induced pluripotent stem cells (hiPSC-NSPCs), and that hESC-NSPCs and hiPSC-NSPCs are adaptable, powerful substitutes for hN-NSPCs in both regenerative medicine and pharmacological or neurotoxicological assays. We here describe a new protocol to generate neurospheres consisting of hiPSC-NSPCs using microsphere arrays, the surface of which is modified with polyethylene glycol to render it nonadhesive to cells. Primary hiPSCs treated with noggin formed neurospheres on the microsphere arrays and could be stably propagated as free-floating spheroids. The hiPSC-NSPCs proliferating in these neurospheres were almost identical in phenotype to hN-NSPCs, in both cell-surface marker expression and their ability to differentiate into neuronal cells, although gene expression profiles showed that the hiPSC-NSPCs had higher neural and lower glial gene expression, along with mid-hindbrain-like regional specificity. This convenient propagation protocol can be used to evaluate the neurosphere-forming efficiency of hiPSC clones. This method will support the generation of neurospheres from hESCs and hiPSCs and contribute to the use of hESC-NSPCs and hiPSC-NSPCs in research.


Subject(s)
Cell Culture Techniques , Cell Differentiation , Embryonic Stem Cells/cytology , Induced Pluripotent Stem Cells/cytology , Microspheres , Neural Stem Cells/cytology , Cell Culture Techniques/methods , Cell Line , Embryonic Stem Cells/metabolism , Humans , Neurons/cytology , Regenerative Medicine/methods
14.
Cell Med ; 4(3): 125-47, 2013 Mar.
Article in English | MEDLINE | ID: mdl-26858858

ABSTRACT

Placental tissue is a biomaterial with remarkable potential for use in regenerative medicine. It has a three-layer structure derived from the fetus (amnion and chorion) and the mother (decidua), and it contains huge numbers of cells. Moreover, placental tissue can be collected without any physical danger to the donor and can be matched with a variety of HLA types. The decidua-derived mesenchymal cells (DMCs) are highly proliferative fibroblast-like cells that express a similar pattern of CD antigens as bone marrow-derived mesenchymal cells (BM-MSCs). Here we demonstrated that induced pluripotent stem (iPS) cells could be efficiently generated from DMCs by retroviral transfer of reprogramming factor genes. DMC-hiPS cells showed equivalent characteristics to human embryonic stem cells (hESCs) in colony morphology, global gene expression profile (including human pluripotent stem cell markers), DNA methylation status of the OCT3/4 and NANOG promoters, and ability to differentiate into components of the three germ layers in vitro and in vivo. The RNA expression of XIST and the methylation status of its promoter region suggested that DMC-iPSCs, when maintained undifferentiated and pluripotent, had three distinct states: (1) complete X-chromosome reactivation, (2) one inactive X-chromosome, or (3) an epigenetic aberration. Because DMCs are derived from the maternal portion of the placenta, they can be collected with the full consent of the adult donor and have considerable ethical advantages for cell banking and the subsequent generation of human iPS cells for regenerative applications.

15.
Photochem Photobiol ; 84(4): 839-44, 2008.
Article in English | MEDLINE | ID: mdl-18282179

ABSTRACT

PpsR is a transcription repressor for the gene cluster encoding photosystem genes in Rhodobacter sphaeroides. Repression activity is accomplished by DNA binding on the promoter regions of the photosystem gene clusters, and depends on both the redox potential and the presence of antirepressor protein AppA. To understand DNA repression regulation by PpsR, we investigated the function of PpsR domains in self-association for DNA binding. We constructed domain-deletion mutants and verified DNA-binding activity and dimer formation. Gel shift assay for measuring the DNA-binding activity of three sequential N-terminal deletion mutants revealed that N-terminal deletions (of minimum 121 residues) caused loss of binding activity. Size-exclusion gel chromatography revealed that deletion mutant which lacks the N-terminal 121-amino acid deletion mutant to exist as a dimer, although it was less stable than the intact PpsR. The mutants lacking the adjacent regions, Q-linker region and the first Per-Ant-Sim domain, did not form dimers, suggesting the involvement of the N-terminal region in dimer formation. This region is thus considered to be a functional domain in self-association, although not yet identified as a structural domain. Circular dichroism spectrum of the N-terminal region fragment exhibited a alpha/beta structure. We conclude that this region is a structural and functional domain, contributing to PpsR repression through dimer stabilization.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/genetics , DNA-Binding Proteins/chemistry , DNA-Binding Proteins/genetics , Repressor Proteins/chemistry , Repressor Proteins/genetics , Rhodobacter sphaeroides/metabolism , Bacterial Proteins/metabolism , DNA-Binding Proteins/metabolism , Dimerization , Polymerase Chain Reaction , Repressor Proteins/metabolism , Rhodobacter sphaeroides/genetics , Sequence Deletion , Spectrophotometry, Ultraviolet , Transcription Factors/chemistry , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...