Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Hematol ; 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38963637

ABSTRACT

Previous prospective randomized trials have investigated the efficacy of gemtuzumab ozogamicin in the frontline treatment of acute myeloid leukemia (AML). We evaluated the efficacy of high-dose cytarabine with GO as consolidation therapy in 20 patients with favorable- or intermediate-risk AML in first complete remission. They included six patients with wild-type nucleophosmin (NPM1) core binding factor (CBF), ten with NPM1-mutated non-CBF, and four with wild-type NPM1 non-CBF. The median follow-up for the entire cohort was 62.0 months. The three-year overall survival (OS) and relapse-free survival (RFS) rates were 72.2% and 77.8%, respectively. OS and RFS were significantly higher for NPM1-mutated non-CBF AML than for wild-type NPM1 non-CBF AML (p = 0.001). We also examined the CD33 single-nucleotide polymorphism (SNP) rs12459419, which has been reported to influence the therapeutic efficacy of GO and CD33 expression. The CD33 expression ratio was higher in CD33 SNP C/C than in C/T (83.1% vs. 49.8%, p = 0.035), but 3-year OS and RFS did not differ significantly. These results suggest that consolidation therapy with high-dose cytarabine plus GO is highly effective in transplant-ineligible elderly patients and may be a reasonable treatment, especially for NPM1-mutated AML.

2.
Int J Hematol ; 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38853211

ABSTRACT

The single-nucleotide polymorphism (SNP) rs12459419 is located at the intron/exon junction of CD33 exon2. When exon2 is skipped by this CD33 SNP, the full-length CD33 (CD33FL) is converted to a short CD33 isoform (CD33D2). Since gemtuzumab ozogamicin (GO) only recognizes CD33FL, the CD33 SNP may affect the clinical efficacy of GO. To elucidate the significance of CD33 SNP on GO reactivity, we leveraged the CRISPR/Cas9 genome-editing system to create OCI-AML3 cell lines with specifically modified CD33 SNPs. Levels of CD33 D2 mRNA were significantly higher in the T/T clone (p < 0.001), but CD33D2 protein was not detectable in any clones. There was no significant difference in CD33FL mRNA expression across edited clones, and CD33FL protein expression was lowest in T/T clones, followed by T/C and C/C. Cytotoxicity assays revealed that the IC50 of GO was significantly lower in T/C and C/C clones than in the T/T clone (p < 0.001). Our study demonstrated a difference in GO-induced cytotoxicity in CD33 SNP-edited clones, clearly indicating that at least one CD33 SNP allele, rs12459419 C, is important for sensitivity to GO.

3.
Int J Hematol ; 119(4): 426-431, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38363480

ABSTRACT

Silent inactivation of L-asparaginase (L-Asp) represents rapid clearance of L-Asp by anti-L-Asp IgG antibodies without clinical symptoms. Measurement of L-Asp activity is the gold standard for diagnosis of silent inactivation, but this test is not commercially available in Japan as of 2023. We evaluated ex vivo and in vivo ammonia production in relation to L-Asp activity. Blood samples from ten adult patients treated with L-Asp were collected to measure ammonia levels and L-Asp activity before the first dose and 24 h after the last dose of L-Asp, during each cycle of treatment. Plasma ammonia levels were analyzed immediately and 1 h after incubation at room temperature, and ex vivo ammonia production was defined as the increase in ammonia concentration. Ex vivo ammonia production correlated with L-Asp activity (R2 = 0.741), and ammonia levels measured immediately after blood collection were moderately correlated with L-Asp activity (R2 = 0.709). One patient with extranodal NK/T-cell lymphoma showed an increase in ammonia levels during the first cycle, but no increase in ammonia levels or L-Asp activity after L-Asp administration during the second cycle. Both ex vivo and in vivo ammonia production and surrogate markers are used for L-Asp biological activity.


Subject(s)
Asparaginase , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Adult , Humans , Asparaginase/adverse effects , Ammonia/therapeutic use , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Antibodies , Biomarkers
SELECTION OF CITATIONS
SEARCH DETAIL
...