Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biosci Biotechnol Biochem ; 80(12): 2418-2424, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27539562

ABSTRACT

Wheat noodles cooked for different periods of time were stored at 5 °C, and color changes in their cross sections were quantitatively assessed by digital image analysis. The color of noodles with flattened moisture distributions whitened greatly during the early stages of chilled storage due to the retrogradation of starch, with the color change showing a significant correlation with the changes in noodle fragility. Color changes were also measured for wheat noodles and noodles containing modified starch with internal moisture distributions, and local changes within the noodles were kinetically analyzed. The addition of modified starch significantly reduced the color change in the noodle interior, where the moisture content was relatively low. Scanning calorimetric measurements indicated differences in the gelatinized state of modified starch and original wheat starch at low moisture contents, which affected the rate of color change in the interior of noodles containing modified starch.


Subject(s)
Food Handling , Temperature , Triticum/chemistry , Color , Kinetics , Starch/chemistry
2.
Biosci Biotechnol Biochem ; 80(8): 1609-14, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27088718

ABSTRACT

Wheat starch dispersions of 10-40% (w/w) were gelatinized and the change in turbidity of each solution during storage was measured in the 400-1100 nm wavelength range. The relative transmittance, defined as the ratio of transmittance at any storage time to that at the initial time, decreased when the solutions were stored at 5 and 30 °C; the decrease, reflecting the progress of retrogradation, was larger at 5 °C than at 30 °C. Most of the changes in relative transmission taking place over 14 days were achieved during the first 90 min. The change in the relative transmittance is inversely proportional to the energy required for deformation. The kinetics on change in relative transmittance can be expressed by Weibull equation. The larger rate constant at higher starch concentration could be ascribed to the state of the starch granules, which depended on starch concentration.


Subject(s)
Food Technology , Starch/chemistry , Triticum/chemistry , Gels , Humans , Kinetics , Nephelometry and Turbidimetry , Phase Transition , Suspensions
SELECTION OF CITATIONS
SEARCH DETAIL