Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 13(7): 4182-4194, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36760274

ABSTRACT

In this work, the Eu3+, Cr3+ doped and co-doped LaVO4 phosphors have been prepared through a high temperature solid-state reaction method. The powder XRD patterns of phosphors are very sharp and intense, which reflects a highly crystalline nature of phosphors. The XRD data were also refined by a Rietveld refinement method. The particle size of the phosphor samples lies in the sub-micron to micron range. The existence of La, Eu, Cr, V and O elements was verified by EDS spectra. The FTIR spectra show various absorption bands due to different vibrating groups. The optical band gap of the phosphor decreases on increasing concentration of Cr3+ ion. The photoluminescence excitation spectra of Eu3+, Cr3+ co-doped LaVO4 phosphor exhibit bands due to Eu3+ and Cr3+ ions. The Eu3+ doped LaVO4 phosphor exciting at 393 and 316 nm wavelengths gives intense red color at 614 nm due to the 5D0 → 7F2 transition of the Eu3+ ion. When the Cr3+ ion is co-doped in the Eu3+ doped LaVO4 phosphor the emission spectra contain emission bands due to Eu3+ and Cr3+ ions. The emission intensity of Eu3+ doped phosphor reduces due to energy transfer from Eu3+ to Cr3+ ions in presence of Cr3+ ions upon 393 and 386 nm excitations. The lifetime of the 5D0 level of Eu3+ ions decreases in the Eu3+, Cr3+ co-doped LaVO4 phosphor, which also reflects the energy transfer. The Eu3+, Cr3+ co-doped LaVO4 phosphor also produces a large amount of heat upon 980 nm excitation. Thus, the Eu3+, Cr3+ co-doped LaVO4 phosphors may be used for LEDs, solid state lighting and heat generating devices.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 243: 118787, 2020 Dec 15.
Article in English | MEDLINE | ID: mdl-32799190

ABSTRACT

In this paper, we have studied the structural, optical, dielectric and magnetic properties of Eu3+, Bi3+ co-doped LaVO4 phosphors prepared by solid state reaction method. Rietveld structural analysis of the samples confirms the monoclinic crystal structure with P21/n space group. The particles size of Eu3+ doped LaVO4 phosphor increased in presence of Bi3+ ion. The excitation spectrum of Eu3+, Bi3+ co-doped LaVO4 phosphor reveals bands due to charge transfer state (CTS) and electronic transitions of Eu3+ and Bi3+ ions. The Eu3+ doped LaVO4 phosphor gives intense red emission centred at 613 nm due to 5D0 â†’ 7F2 transition of Eu3+ ion excited at 266, 355 and 394 nm wavelengths. When Bi3+ and Eu3+ ions are co-doped in the LaVO4 phosphor the photoluminescence intensity is enhanced upto two times. The photoluminescence intensity is largest for the 266 nm excitation. This is due to energy transfer from CTS and (1P1, 3P1) levels of the Bi3+ ion to 5D4 level of the Eu3+ ion and increase in the particles size of phosphor. The Eu3+, Bi3+ co-doped LaVO4 phosphors also show excellent dielectric and magnetic properties with a variation in frequency and magnetic field, respectively. Thus, the Eu3+, Bi3+ co-doped LaVO4 phosphor may be useful in fabricating displays devices, red emitting phosphors, dielectric capacitors and magnetic devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...