Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Cell Biol ; 222(5)2023 05 01.
Article in English | MEDLINE | ID: mdl-36897279

ABSTRACT

Amplification of the mitotic kinase Aurora A or loss of its regulator protein phosphatase 6 (PP6) have emerged as drivers of genome instability. Cells lacking PPP6C, the catalytic subunit of PP6, have amplified Aurora A activity, and as we show here, enlarged mitotic spindles which fail to hold chromosomes tightly together in anaphase, causing defective nuclear structure. Using functional genomics to shed light on the processes underpinning these changes, we discover synthetic lethality between PPP6C and the kinetochore protein NDC80. We find that NDC80 is phosphorylated on multiple N-terminal sites during spindle formation by Aurora A-TPX2, exclusively at checkpoint-silenced, microtubule-attached kinetochores. NDC80 phosphorylation persists until spindle disassembly in telophase, is increased in PPP6C knockout cells, and is Aurora B-independent. An Aurora-phosphorylation-deficient NDC80-9A mutant reduces spindle size and suppresses defective nuclear structure in PPP6C knockout cells. In regulating NDC80 phosphorylation by Aurora A-TPX2, PP6 plays an important role in mitotic spindle formation and size control and thus the fidelity of cell division.


Subject(s)
Aurora Kinase A , Cytoskeletal Proteins , Microtubule-Associated Proteins , Nuclear Proteins , Phosphoprotein Phosphatases , Cell Cycle Proteins/metabolism , Kinetochores/metabolism , Microtubules/metabolism , Mitosis , Nuclear Proteins/metabolism , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Spindle Apparatus/metabolism , Cytoskeletal Proteins/metabolism , Aurora Kinase A/metabolism , Microtubule-Associated Proteins/metabolism
2.
Cell Chem Biol ; 30(2): 188-202.e6, 2023 02 16.
Article in English | MEDLINE | ID: mdl-36720221

ABSTRACT

Reversible protein phosphorylation, catalyzed by protein kinases and phosphatases, is a fundamental process that controls protein function and intracellular signaling. Failure of phospho-control accounts for many human diseases. While a kinase phosphorylates multiple substrates, a substrate is often phosphorylated by multiple kinases. This renders phospho-control at the substrate level challenging, as it requires inhibition of multiple kinases, which would thus affect other kinase substrates. Here, we describe the development and application of the affinity-directed phosphatase (AdPhosphatase) system for targeted dephosphorylation of specific phospho-substrates. By deploying the Protein Phosphatase 1 or 2A catalytic subunits conjugated to an antigen-stabilized anti-GFP nanobody, we can promote the dephosphorylation of two independent phospho-proteins, FAM83D or ULK1, knocked in with GFP-tags using CRISPR-Cas9, with exquisite specificity. By redirecting protein phosphatases to neo-substrates through nanobody-mediated proximity, AdPhosphatase can alter the phospho-status and function of target proteins and thus, offers a new modality for potential drug discovery approaches.


Subject(s)
Protein Kinases , Protein Phosphatase 2 , Humans , Cell Cycle Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Phosphorylation , Protein Kinases/metabolism , Protein Phosphatase 2/metabolism , Substrate Specificity , Phosphoric Monoester Hydrolases/metabolism
3.
Biochem J ; 477(23): 4603-4621, 2020 12 11.
Article in English | MEDLINE | ID: mdl-33306089

ABSTRACT

Regarded as constitutively active enzymes, known to participate in many, diverse biological processes, the intracellular regulation bestowed on the CK1 family of serine/threonine protein kinases is critically important, yet poorly understood. Here, we provide an overview of the known CK1-dependent cellular functions and review the emerging roles of CK1-regulating proteins in these processes. We go on to discuss the advances, limitations and pitfalls that CK1 researchers encounter when attempting to define relationships between CK1 isoforms and their substrates, and the challenges associated with ascertaining the correct physiological CK1 isoform for the substrate of interest. With increasing interest in CK1 isoforms as therapeutic targets, methods of selectively inhibiting CK1 isoform-specific processes is warranted, yet challenging to achieve given their participation in such a vast plethora of signalling pathways. Here, we discuss how one might shut down CK1-specific processes, without impacting other aspects of CK1 biology.


Subject(s)
Casein Kinase I/metabolism , Signal Transduction , Animals , Casein Kinase I/genetics , Humans , Isoenzymes/genetics , Isoenzymes/metabolism , Substrate Specificity
4.
Cell Chem Biol ; 27(9): 1164-1180.e5, 2020 09 17.
Article in English | MEDLINE | ID: mdl-32668203

ABSTRACT

The affinity-directed protein missile (AdPROM) system utilizes specific polypeptide binders of intracellular proteins of interest (POIs) conjugated to an E3 ubiquitin ligase moiety to enable targeted proteolysis of the POI. However, a chemically tuneable AdPROM system is more desirable. Here, we use Halo-tag/VHL-recruiting proteolysis-targeting chimera (HaloPROTAC) technology to develop a ligand-inducible AdPROM (L-AdPROM) system. When we express an L-AdPROM construct consisting of an anti-GFP nanobody conjugated to the Halo-tag, we achieve robust degradation of GFP-tagged POIs only upon treatment of cells with the HaloPROTAC. For GFP-tagged POIs, ULK1, FAM83D, and SGK3 were knocked in with a GFP-tag using CRISPR/Cas9. By substituting the anti-GFP nanobody for a monobody that binds H- and K-RAS, we achieve robust degradation of unmodified endogenous RAS proteins only in the presence of the HaloPROTAC. Through substitution of the polypeptide binder, the highly versatile L-AdPROM system is useful for the inducible degradation of potentially any intracellular POI.


Subject(s)
Proteolysis , Single-Chain Antibodies/metabolism , Affinity Labels , Autophagy-Related Protein-1 Homolog/genetics , Autophagy-Related Protein-1 Homolog/metabolism , CRISPR-Cas Systems/genetics , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line , Gene Knock-In Techniques , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/immunology , Green Fluorescent Proteins/metabolism , Humans , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Peptides/chemistry , Peptides/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Single-Chain Antibodies/chemistry , Single-Chain Antibodies/genetics , Ubiquitination , ras Proteins/metabolism
5.
Cell Signal ; 72: 109632, 2020 08.
Article in English | MEDLINE | ID: mdl-32289446

ABSTRACT

The majority of mutations identified in patients with amelogenesis imperfecta have been mapped to FAM83H. As FAM83H expression is not limited to the enamel, how FAM83H contributes to amelogenesis is still largely unknown. We previously reported that members of the FAM83 family of proteins interact with and regulate the subcellular distribution of the promiscuous serine-threonine protein kinase CK1 family, through their shared N-terminal DUF1669 domains. FAM83H co-localises with CK1 isoforms to speckle-like structures in both the cytoplasm and nucleus. In this report, we show FAM83H, unlike other FAM83 proteins, interacts and colocalises with NCK1/2 tyrosine kinase adaptor proteins. This interaction is mediated by proline-rich motifs within the C-terminus of FAM83H, specifically interacting with the second and third SH3 domains of NCK1/2. Moreover, FAM83H pathogenic AI mutant proteins, which trigger C-terminal truncations of FAM83H, retain their interactions with CK1 isoforms but lose interaction with NCK1/2. These AI mutant FAM83H proteins acquire a nuclear localisation, and recruit CK1 isoforms to the nucleus where CK1 retains its kinase activity. As understanding the constituents of the FAM83H-localised speckles may hold the key to unravelling potential substrates of FAM83H-associated CK1 substrates, we employed a TurboID-based proximity labelling approach and uncovered several proteins including Iporin and BAG3 as potential constituents of the speckles.


Subject(s)
Amelogenesis Imperfecta/genetics , Mutation/genetics , Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Amino Acid Motifs , Amino Acid Sequence , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Cell Nucleus/metabolism , HEK293 Cells , Humans , Oncogene Proteins/metabolism , Protein Binding , Protein Domains , Proteins/chemistry , Proteins/metabolism
6.
Cell Cycle ; 19(5): 505-524, 2020 03.
Article in English | MEDLINE | ID: mdl-32048898

ABSTRACT

The coordinated activities of many protein kinases, acting on multiple protein substrates, ensures the error-free progression through mitosis of eukaryotic cells. Enormous research effort has thus been devoted to studying the roles and regulation of these mitotic kinases, and to the identification of their physiological substrates. Central for the timely deployment of specific protein kinases to their appropriate substrates during the cell division cycle are the many anchoring proteins, which serve critical regulatory roles. Through direct association, anchoring proteins are capable of modulating the catalytic activity and/or sub-cellular distribution of the mitotic kinases they associate with. The key roles of some anchoring proteins in cell division are well-established, whilst others are still being unearthed. Here, we review the current knowledge on anchoring proteins for some mitotic kinases, and highlight how targeting anchoring proteins for inhibition, instead of the mitotic kinases themselves, could be advantageous for disrupting the cell division cycle.


Subject(s)
Mitosis , Protein Kinases/metabolism , Animals , Aurora Kinases/metabolism , Cyclin-Dependent Kinases/metabolism , Cyclins/metabolism , Humans , M Phase Cell Cycle Checkpoints , Microtubule-Associated Proteins/metabolism , Mitosis/drug effects
7.
EMBO Rep ; 20(9): e47495, 2019 09.
Article in English | MEDLINE | ID: mdl-31338967

ABSTRACT

The concerted action of many protein kinases helps orchestrate the error-free progression through mitosis of mammalian cells. The roles and regulation of some prominent mitotic kinases, such as cyclin-dependent kinases, are well established. However, these and other known mitotic kinases alone cannot account for the extent of protein phosphorylation that has been reported during mammalian mitosis. Here we demonstrate that CK1α, of the casein kinase 1 family of protein kinases, localises to the spindle and is required for proper spindle positioning and timely cell division. CK1α is recruited to the spindle by FAM83D, and cells devoid of FAM83D, or those harbouring CK1α-binding-deficient FAM83DF283A/F283A knockin mutations, display pronounced spindle positioning defects, and a prolonged mitosis. Restoring FAM83D at the endogenous locus in FAM83D-/- cells, or artificially delivering CK1α to the spindle in FAM83DF283A/F283A cells, rescues these defects. These findings implicate CK1α as new mitotic kinase that orchestrates the kinetics and orientation of cell division.


Subject(s)
Casein Kinase I/metabolism , Cell Cycle Proteins/metabolism , Microtubule-Associated Proteins/metabolism , Spindle Apparatus/metabolism , Animals , Casein Kinase I/genetics , Cell Cycle/genetics , Cell Cycle/physiology , Cell Cycle Proteins/genetics , Cell Line, Tumor , Flow Cytometry , HeLa Cells , Humans , Mice , Mice, Knockout , Microtubule-Associated Proteins/genetics , Mitosis/genetics , Mitosis/physiology
8.
Cell Mol Life Sci ; 76(14): 2761-2777, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31030225

ABSTRACT

Protein silencing is often employed as a means to aid investigations in protein function and is increasingly desired as a therapeutic approach. Several types of protein silencing methodologies have been developed, including targeting the encoding genes, transcripts, the process of translation or the protein directly. Despite these advances, most silencing systems suffer from limitations. Silencing protein expression through genetic ablation, for example by CRISPR/Cas9 genome editing, is irreversible, time consuming and not always feasible. Similarly, RNA interference approaches warrant prolonged treatments, can lead to incomplete protein depletion and are often associated with off-target effects. Targeted proteolysis has the potential to overcome some of these limitations. The field of targeted proteolysis has witnessed the emergence of many methodologies aimed at targeting specific proteins for degradation in a spatio-temporal manner. In this review, we provide an appraisal of the different targeted proteolytic systems and discuss their applications in understanding protein function, as well as their potential in therapeutics.


Subject(s)
Gene Editing , Proteasome Endopeptidase Complex/metabolism , Proteins/metabolism , Proteolysis , Humans , Proteasome Endopeptidase Complex/genetics , Proteins/genetics , Ubiquitination
9.
Sci Signal ; 11(531)2018 05 22.
Article in English | MEDLINE | ID: mdl-29789297

ABSTRACT

Members of the casein kinase 1 (CK1) family of serine-threonine protein kinases are implicated in the regulation of many cellular processes, including the cell cycle, circadian rhythms, and Wnt and Hedgehog signaling. Because these kinases exhibit constitutive activity in biochemical assays, it is likely that their activity in cells is controlled by subcellular localization, interactions with inhibitory proteins, targeted degradation, or combinations of these mechanisms. We identified members of the FAM83 family of proteins as partners of CK1 in cells. All eight members of the FAM83 family (FAM83A to FAM83H) interacted with the α and α-like isoforms of CK1; FAM83A, FAM83B, FAM83E, and FAM83H also interacted with the δ and ε isoforms of CK1. We detected no interaction between any FAM83 member and the related CK1γ1, CK1γ2, and CK1γ3 isoforms. Each FAM83 protein exhibited a distinct pattern of subcellular distribution and colocalized with the CK1 isoform(s) to which it bound. The interaction of FAM83 proteins with CK1 isoforms was mediated by the conserved domain of unknown function 1669 (DUF1669) that characterizes the FAM83 family. Mutations in FAM83 proteins that prevented them from binding to CK1 interfered with the proper subcellular localization and cellular functions of both the FAM83 proteins and their CK1 binding partners. On the basis of its function, we propose that DUF1669 be renamed the polypeptide anchor of CK1 domain.


Subject(s)
Casein Kinase I/metabolism , Intracellular Signaling Peptides and Proteins/chemistry , Neoplasm Proteins/chemistry , Protein Domains , Casein Kinase I/chemistry , Casein Kinase I/genetics , HEK293 Cells , Humans , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , Protein Isoforms , Signal Transduction
10.
Open Biol ; 7(5)2017 05.
Article in English | MEDLINE | ID: mdl-28490657

ABSTRACT

Targeted proteolysis of endogenous proteins is desirable as a research toolkit and in therapeutics. CRISPR/Cas9-mediated gene knockouts are irreversible and often not feasible for many genes. Similarly, RNA interference approaches necessitate prolonged treatments, can lead to incomplete knockdowns and are often associated with off-target effects. Targeted proteolysis can overcome these limitations. In this report, we describe an affinity-directed protein missile (AdPROM) system that harbours the von Hippel-Lindau (VHL) protein, the substrate receptor of the Cullin2 (CUL2) E3 ligase complex, tethered to polypeptide binders that selectively bind and recruit endogenous target proteins to the CUL2-E3 ligase complex for ubiquitination and proteasomal degradation. By using synthetic monobodies that selectively bind the protein tyrosine phosphatase SHP2 and a camelid-derived VHH nanobody that selectively binds the human ASC protein, we demonstrate highly efficient AdPROM-mediated degradation of endogenous SHP2 and ASC in human cell lines. We show that AdPROM-mediated loss of SHP2 in cells impacts SHP2 biology. This study demonstrates for the first time that small polypeptide binders that selectively recognize endogenous target proteins can be exploited for AdPROM-mediated destruction of the target proteins.


Subject(s)
Gene Knock-In Techniques/methods , Proteasome Endopeptidase Complex/metabolism , Tumor Suppressor Proteins/metabolism , Ubiquitination , A549 Cells , Blotting, Western , CARD Signaling Adaptor Proteins/genetics , CARD Signaling Adaptor Proteins/metabolism , Cell Line, Tumor , Cullin Proteins/genetics , Cullin Proteins/metabolism , Humans , Protein Tyrosine Phosphatase, Non-Receptor Type 11/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Proteolysis , RNA Interference , Tumor Suppressor Proteins/genetics , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
11.
Bio Protoc ; 7(22): e2614, 2017 Nov 20.
Article in English | MEDLINE | ID: mdl-34595287

ABSTRACT

We recently reported an Affinity-directed PROtein Missile (AdPROM) system for the targeted proteolysis of endogenous proteins of interest (POI) ( Fulcher et al., 2016 and 2017). AdPROM consists of the Von Hippel Lindau (VHL) protein, a Cullin 2 E3 ligase substrate receptor (Bosu and Kipreos, 2008), conjugated to a high affinity polypeptide binder (such as a camelid nanobody) that recognises the target protein in cells. When introduced in cells, the target protein is recruited to the CUL2 E3 ubiquitin ligase complex for ubiquitin-mediated proteasomal degradation. For target protein recruitment, we have utilised both camelid-derived VHH domain nanobodies as well as synthetic polypeptide monobodies based on the human type III fibronectin domain ( Sha et al., 2013 ; Fridy et al., 2014 ; Schmidt et al., 2016 ). In this protocol, we describe detailed methodology involved in generating AdPROM constructs and their application in human cell lines for target protein destruction. AdPROM allows functional characterisation of the POI and its efficiency of target protein destruction overcomes many limitations of RNA-interference approaches, which necessitate long treatments and are associated with off-target effects, and CRISPR/Cas9 gene editing, which is not always feasible.

12.
Open Biol ; 6(10)2016 10.
Article in English | MEDLINE | ID: mdl-27784791

ABSTRACT

The von Hippel-Lindau (VHL) protein serves to recruit the hypoxia-inducible factor alpha (HIF1α) protein under normoxia to the CUL2 E3 ubiquitin ligase for its ubiquitylation and degradation through the proteasome. In this report, we modify VHL to engineer an affinity-directed protein missile (AdPROM) system to direct specific endogenous target proteins for proteolysis in mammalian cells. The proteolytic AdPROM construct harbours a cameloid anti-green fluorescence protein (aGFP) nanobody that is fused to VHL for either constitutive or tetracycline-inducible expression. For target proteins, we exploit CRISPR/Cas9 to rapidly generate human kidney HEK293 and U2OS osteosarcoma homozygous knock-in cells harbouring GFP tags at the VPS34 (vacuolar protein sorting 34) and protein associated with SMAD1 (PAWS1, aka FAM83G) loci, respectively. Using these cells, we demonstrate that the expression of the VHL-aGFP AdPROM system results in near-complete degradation of the endogenous GFP-VPS34 and PAWS1-GFP proteins through the proteasome. Additionally, we show that Tet-inducible destruction of GFP-VPS34 results in the degradation of its associated partner, UVRAG, and reduction in levels of cellular phosphatidylinositol 3-phosphate.


Subject(s)
Protein Engineering/methods , Proteolysis , Recombinant Fusion Proteins/metabolism , Cell Line, Tumor , Class III Phosphatidylinositol 3-Kinases/genetics , Class III Phosphatidylinositol 3-Kinases/metabolism , Gene Knock-In Techniques , HEK293 Cells , Humans , Recombinant Fusion Proteins/genetics , Smad1 Protein/genetics , Smad1 Protein/metabolism , Tumor Suppressor Proteins/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/genetics , Von Hippel-Lindau Tumor Suppressor Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...