Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Curr Zool ; 64(6): 693-702, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30538728

ABSTRACT

The quality of a breeding site may have major fitness consequences. A fundamental step to understanding the process of nest-site selection is the identification of the information individuals use to choose high-quality nest sites. For secondary cavity-nesting bird species that do not add nest lining material, organic remains (faeces, pellets) accumulated inside nest cavities during previous breeding events may be a cue for high-quality nest-sites, as they contain information about past successful breeding and may improve thermal insulation of eggs during incubation. However, cavities in which breeding was successful might also contain more nest-dwelling ectoparasites than unoccupied cavities, offering an incentive for prospective parents to avoid them. We exposed breeding cavity-nesting lesser kestrels (Falco naumanni) to nestbox dyads consisting of a dirty (with a thick layer of organic substrate) and a clean nestbox (without organic material). Dirty nestboxes were strongly preferred, being occupied earlier and more frequently than clean ones. Hatching success in dirty nestboxes was significantly higher than in clean ones, suggesting a positive effect of organic nest material on incubation efficiency, while nestbox dirtiness did not significantly affect clutch and brood size. Nestlings from dirty nestboxes had significantly higher ectoparasite load than those from clean nestboxes soon after egg hatching, but this difference was not evident a few days later. Nest substrate did not significantly affect nestling growth. We concluded that nest substrate is a key driver of nest-site choice in lesser kestrels, although the adaptive value of such a strong preference appears elusive and may be context-dependent.

2.
Sci Rep ; 8(1): 11762, 2018 08 06.
Article in English | MEDLINE | ID: mdl-30082763

ABSTRACT

Enhancement of information transfer has been proposed as a key driver of the evolution of coloniality. Transfer of information on location of food resources implies that individuals from the same colony share foraging areas and that each colony can be associated to a specific foraging area. In colonial breeding vertebrates, colony-specific foraging areas are often spatially segregated, mitigating intercolony intraspecific competition. By means of simultaneous GPS tracking of lesser kestrels (Falco naumanni) from neighbouring colonies, we showed a clear segregation of space use between individuals from different colonies. Foraging birds from different neighbouring colonies had home ranges that were significantly more segregated in space than expected by chance. This was the case both between large and between small neighbouring colonies. To our knowledge, the lesser kestrel is the only terrestrial species where evidence of spatial segregation of home ranges between conspecifics from neighbouring colonies has been demonstrated. The observed spatial segregation pattern is consistent with the occurrence of public information transfer about foraging areas and with the avoidance of overexploited areas located between neighbouring colonies. Our findings support the idea that spatial segregation of exploited areas may be widespread among colonial avian taxa, irrespective of colony size.


Subject(s)
Raptors/physiology , Animals , Ecosystem , Falconiformes/physiology , Feeding Behavior/physiology , Female , Homing Behavior/physiology , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...