Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Med Image Anal ; 86: 102765, 2023 05.
Article in English | MEDLINE | ID: mdl-36965252

ABSTRACT

Challenges have become the state-of-the-art approach to benchmark image analysis algorithms in a comparative manner. While the validation on identical data sets was a great step forward, results analysis is often restricted to pure ranking tables, leaving relevant questions unanswered. Specifically, little effort has been put into the systematic investigation on what characterizes images in which state-of-the-art algorithms fail. To address this gap in the literature, we (1) present a statistical framework for learning from challenges and (2) instantiate it for the specific task of instrument instance segmentation in laparoscopic videos. Our framework relies on the semantic meta data annotation of images, which serves as foundation for a General Linear Mixed Models (GLMM) analysis. Based on 51,542 meta data annotations performed on 2,728 images, we applied our approach to the results of the Robust Medical Instrument Segmentation Challenge (ROBUST-MIS) challenge 2019 and revealed underexposure, motion and occlusion of instruments as well as the presence of smoke or other objects in the background as major sources of algorithm failure. Our subsequent method development, tailored to the specific remaining issues, yielded a deep learning model with state-of-the-art overall performance and specific strengths in the processing of images in which previous methods tended to fail. Due to the objectivity and generic applicability of our approach, it could become a valuable tool for validation in the field of medical image analysis and beyond.


Subject(s)
Algorithms , Laparoscopy , Humans , Image Processing, Computer-Assisted/methods
2.
IEEE Trans Med Imaging ; 41(10): 2728-2738, 2022 10.
Article in English | MEDLINE | ID: mdl-35468060

ABSTRACT

Detecting Out-of-Distribution (OoD) data is one of the greatest challenges in safe and robust deployment of machine learning algorithms in medicine. When the algorithms encounter cases that deviate from the distribution of the training data, they often produce incorrect and over-confident predictions. OoD detection algorithms aim to catch erroneous predictions in advance by analysing the data distribution and detecting potential instances of failure. Moreover, flagging OoD cases may support human readers in identifying incidental findings. Due to the increased interest in OoD algorithms, benchmarks for different domains have recently been established. In the medical imaging domain, for which reliable predictions are often essential, an open benchmark has been missing. We introduce the Medical-Out-Of-Distribution-Analysis-Challenge (MOOD) as an open, fair, and unbiased benchmark for OoD methods in the medical imaging domain. The analysis of the submitted algorithms shows that performance has a strong positive correlation with the perceived difficulty, and that all algorithms show a high variance for different anomalies, making it yet hard to recommend them for clinical practice. We also see a strong correlation between challenge ranking and performance on a simple toy test set, indicating that this might be a valuable addition as a proxy dataset during anomaly detection algorithm development.


Subject(s)
Benchmarking , Machine Learning , Algorithms , Humans
3.
IEEE Trans Med Imaging ; 40(12): 3543-3554, 2021 12.
Article in English | MEDLINE | ID: mdl-34138702

ABSTRACT

The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.


Subject(s)
Heart , Magnetic Resonance Imaging , Cardiac Imaging Techniques , Heart/diagnostic imaging , Humans
4.
Sci Data ; 8(1): 101, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33846356

ABSTRACT

Image-based tracking of medical instruments is an integral part of surgical data science applications. Previous research has addressed the tasks of detecting, segmenting and tracking medical instruments based on laparoscopic video data. However, the proposed methods still tend to fail when applied to challenging images and do not generalize well to data they have not been trained on. This paper introduces the Heidelberg Colorectal (HeiCo) data set - the first publicly available data set enabling comprehensive benchmarking of medical instrument detection and segmentation algorithms with a specific emphasis on method robustness and generalization capabilities. Our data set comprises 30 laparoscopic videos and corresponding sensor data from medical devices in the operating room for three different types of laparoscopic surgery. Annotations include surgical phase labels for all video frames as well as information on instrument presence and corresponding instance-wise segmentation masks for surgical instruments (if any) in more than 10,000 individual frames. The data has successfully been used to organize international competitions within the Endoscopic Vision Challenges 2017 and 2019.


Subject(s)
Colon, Sigmoid/surgery , Proctocolectomy, Restorative/instrumentation , Rectum/surgery , Surgical Navigation Systems , Data Science , Humans , Laparoscopy
5.
Med Image Anal ; 70: 101920, 2021 05.
Article in English | MEDLINE | ID: mdl-33676097

ABSTRACT

Intraoperative tracking of laparoscopic instruments is often a prerequisite for computer and robotic-assisted interventions. While numerous methods for detecting, segmenting and tracking of medical instruments based on endoscopic video images have been proposed in the literature, key limitations remain to be addressed: Firstly, robustness, that is, the reliable performance of state-of-the-art methods when run on challenging images (e.g. in the presence of blood, smoke or motion artifacts). Secondly, generalization; algorithms trained for a specific intervention in a specific hospital should generalize to other interventions or institutions. In an effort to promote solutions for these limitations, we organized the Robust Medical Instrument Segmentation (ROBUST-MIS) challenge as an international benchmarking competition with a specific focus on the robustness and generalization capabilities of algorithms. For the first time in the field of endoscopic image processing, our challenge included a task on binary segmentation and also addressed multi-instance detection and segmentation. The challenge was based on a surgical data set comprising 10,040 annotated images acquired from a total of 30 surgical procedures from three different types of surgery. The validation of the competing methods for the three tasks (binary segmentation, multi-instance detection and multi-instance segmentation) was performed in three different stages with an increasing domain gap between the training and the test data. The results confirm the initial hypothesis, namely that algorithm performance degrades with an increasing domain gap. While the average detection and segmentation quality of the best-performing algorithms is high, future research should concentrate on detection and segmentation of small, crossing, moving and transparent instrument(s) (parts).


Subject(s)
Image Processing, Computer-Assisted , Laparoscopy , Algorithms , Artifacts
6.
JMIR Med Inform ; 9(2): e22795, 2021 Feb 03.
Article in English | MEDLINE | ID: mdl-33533728

ABSTRACT

BACKGROUND: Natural Language Understanding enables automatic extraction of relevant information from clinical text data, which are acquired every day in hospitals. In 2018, the language model Bidirectional Encoder Representations from Transformers (BERT) was introduced, generating new state-of-the-art results on several downstream tasks. The National NLP Clinical Challenges (n2c2) is an initiative that strives to tackle such downstream tasks on domain-specific clinical data. In this paper, we present the results of our participation in the 2019 n2c2 and related work completed thereafter. OBJECTIVE: The objective of this study was to optimally leverage BERT for the task of assessing the semantic textual similarity of clinical text data. METHODS: We used BERT as an initial baseline and analyzed the results, which we used as a starting point to develop 3 different approaches where we (1) added additional, handcrafted sentence similarity features to the classifier token of BERT and combined the results with more features in multiple regression estimators, (2) incorporated a built-in ensembling method, M-Heads, into BERT by duplicating the regression head and applying an adapted training strategy to facilitate the focus of the heads on different input patterns of the medical sentences, and (3) developed a graph-based similarity approach for medications, which allows extrapolating similarities across known entities from the training set. The approaches were evaluated with the Pearson correlation coefficient between the predicted scores and ground truth of the official training and test dataset. RESULTS: We improved the performance of BERT on the test dataset from a Pearson correlation coefficient of 0.859 to 0.883 using a combination of the M-Heads method and the graph-based similarity approach. We also show differences between the test and training dataset and how the two datasets influenced the results. CONCLUSIONS: We found that using a graph-based similarity approach has the potential to extrapolate domain specific knowledge to unseen sentences. We observed that it is easily possible to obtain deceptive results from the test dataset, especially when the distribution of the data samples is different between training and test datasets.

8.
Nat Commun ; 9(1): 5217, 2018 12 06.
Article in English | MEDLINE | ID: mdl-30523263

ABSTRACT

International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future.


Subject(s)
Biomedical Technology/methods , Diagnostic Imaging/methods , Image Processing, Computer-Assisted/methods , Technology Assessment, Biomedical/methods , Biomedical Research/methods , Biomedical Research/standards , Biomedical Technology/classification , Biomedical Technology/standards , Diagnostic Imaging/classification , Diagnostic Imaging/standards , Humans , Image Processing, Computer-Assisted/standards , Reproducibility of Results , Surveys and Questionnaires , Technology Assessment, Biomedical/standards
9.
IEEE Trans Med Imaging ; 37(11): 2514-2525, 2018 11.
Article in English | MEDLINE | ID: mdl-29994302

ABSTRACT

Delineation of the left ventricular cavity, myocardium, and right ventricle from cardiac magnetic resonance images (multi-slice 2-D cine MRI) is a common clinical task to establish diagnosis. The automation of the corresponding tasks has thus been the subject of intense research over the past decades. In this paper, we introduce the "Automatic Cardiac Diagnosis Challenge" dataset (ACDC), the largest publicly available and fully annotated dataset for the purpose of cardiac MRI (CMR) assessment. The dataset contains data from 150 multi-equipments CMRI recordings with reference measurements and classification from two medical experts. The overarching objective of this paper is to measure how far state-of-the-art deep learning methods can go at assessing CMRI, i.e., segmenting the myocardium and the two ventricles as well as classifying pathologies. In the wake of the 2017 MICCAI-ACDC challenge, we report results from deep learning methods provided by nine research groups for the segmentation task and four groups for the classification task. Results show that the best methods faithfully reproduce the expert analysis, leading to a mean value of 0.97 correlation score for the automatic extraction of clinical indices and an accuracy of 0.96 for automatic diagnosis. These results clearly open the door to highly accurate and fully automatic analysis of cardiac CMRI. We also identify scenarios for which deep learning methods are still failing. Both the dataset and detailed results are publicly available online, while the platform will remain open for new submissions.


Subject(s)
Cardiac Imaging Techniques/methods , Deep Learning , Heart/diagnostic imaging , Image Interpretation, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Databases, Factual , Female , Heart Diseases/diagnostic imaging , Humans , Male
SELECTION OF CITATIONS
SEARCH DETAIL
...