Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Crystallogr B Struct Sci Cryst Eng Mater ; 73(Pt 4): 675-695, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28762978

ABSTRACT

In statistics, the index of dispersion (or variance-to-mean ratio) is unity (σ2/〈x〉 = 1) for a Poisson-distributed process with variance σ2 for a variable x that manifests as unit increments. Where x is a measure of some phenomenon, the index takes on a value proportional to the quanta that constitute the phenomenon. That outcome might thus be anticipated to apply for an enormously wide variety of applied measurements of quantum phenomena. However, in a photon-energy proportional radiation detector, a set of M witnessed Poisson-distributed measurements {W1, W2,… WM} scaled so that the ideal expectation value of the quantum is unity, is generally observed to give σ2/〈W〉 < 1 because of detector losses as broadly indicated by Fano [Phys. Rev. (1947), 72, 26]. In other cases where there is spectral dispersion, σ2/〈W〉 > 1. Here these situations are examined analytically, in Monte Carlo simulations, and experimentally. The efforts reveal a powerful metric of quanta broadly associated with such measurements, where the extension has been made to polychromatic and lossy situations. In doing so, the index of dispersion's variously established yet curiously overlooked role as a metric of underlying quanta is indicated. The work's X-ray aspects have very diverse utility and have begun to find applications in radiography and tomography, where the ability to extract spectral information from conventional intensity detectors enables a superior level of material and source characterization.

2.
Struct Dyn ; 4(4): 044011, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28396880

ABSTRACT

The use of low temperature thermal detectors for avoiding Darwin-Bragg losses in lab-based ultrafast experiments has begun. An outline of the background of this new development is offered, showing the relevant history and initiative taken by this work.

3.
J Phys Chem Lett ; 8(5): 1099-1104, 2017 Mar 02.
Article in English | MEDLINE | ID: mdl-28212035

ABSTRACT

The detailed pathways of photoactivity on ultrafast time scales are a topic of contemporary interest. Using a tabletop apparatus based on a laser plasma X-ray source and an array of cryogenic microcalorimeter X-ray detectors, we measured a transient X-ray absorption spectrum during the ferrioxalate photoreduction reaction. With these high-efficiency detectors, we observe the Fe K edge move to lower energies and the amplitude of the extended X-ray absorption fine structure reduce, consistent with a photoreduction mechanism in which electron transfer precedes disassociation. These results are compared to previously published transient X-ray absorption measurements on the same reaction and found to be consistent with the results from Ogi et al. and inconsistent with the results of Chen et al. ( Ogi , Y. ; et al. Struct. Dyn. 2015 , 2 , 034901 ; Chen , J. ; Zhang , H. ; Tomov , I. V. ; Ding , X. ; Rentzepis , P. M. Chem. Phys. Lett. 2007 , 437 , 50 - 55 ). We provide quantitative limits on the Fe-O bond length change. Finally, we review potential improvements to our measurement technique, highlighting the future potential of tabletop X-ray science using microcalorimeter sensors.

4.
Ultramicroscopy ; 111(7): 768-76, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21177037

ABSTRACT

Transient optical gratings for detecting ultrafast signals are routine for temporally resolved photochemical investigations. Many processes can contribute to the formation of such gratings; we indicate use of optically scattering centres that can be formed with highly variable latencies in different materials and devices using ionising radiation. Coherent light scattered by these centres can form the short-wavelength-to-optical-wavelength, incoherent-to-coherent basis of a Bragg X-ray microscope, with inherent scope for optical phasing. Depending on the dynamics of the medium chosen, the way is open to both ultrafast pulsed and integrating measurements. For experiments employing brief pulses, we discuss high-dynamic-range short-wavelength diffraction measurements with real-time optical reconstructions. Applications to optical real-time X-ray phase-retrieval are considered.


Subject(s)
Electron Probe Microanalysis/methods , Microscopy/methods , Radiation, Ionizing , Image Processing, Computer-Assisted/methods , Photons , Spectrometry, X-Ray Emission/methods , X-Ray Diffraction/methods , X-Rays
5.
Biophys J ; 85(4): 2624-32, 2003 Oct.
Article in English | MEDLINE | ID: mdl-14507725

ABSTRACT

X-ray reflectivity of bovine and sheep surfactant-associated protein B (SP-B) monolayers is used in conjunction with pressure-area isotherms and protein models to suggest that the protein undergoes changes in its tertiary structure at the air/water interface under the influence of surface pressure, indicating the likely importance of such changes to the phenomena of protein squeeze out as well as lipid exchange between the air-water interface and subphase structures. We describe an algorithm based on the well-established box- or layer-models that greatly assists the fitting of such unknown scattering-length density profiles, and which takes the available instrumental resolution into account. Scattering-length density profiles from neutron reflectivity of bovine SP-B monolayers on aqueous subphases are shown to be consistent with the exchange of a large number of labile protons as well as the inclusion of a significant amount of water, which is partly squeezed out of the protein monolayer at elevated surface pressures.


Subject(s)
Models, Molecular , Pulmonary Surfactant-Associated Protein B/chemistry , Water/chemistry , X-Ray Diffraction/methods , Animals , Cattle , Computer Simulation , Neutron Diffraction , Protein Conformation , Protein Structure, Tertiary , Pulmonary Surfactant-Associated Protein B/classification , Sheep , Solutions , Species Specificity , Surface Tension
6.
Acta Crystallogr A ; 58(Pt 2): 133-7, 2002 Mar.
Article in English | MEDLINE | ID: mdl-11832582

ABSTRACT

X-ray crystallography has traditionally been limited to the study of the ground-state structure of molecules and solids. Recent technical advances are removing this limitation as demonstrated here by a time-resolved stroboscopic study of the photo-induced 50 micros lifetime excited triplet state of the [Pt(2)(pop)(4)](4-)ion [pop = pyrophosphate, (H(2)P(2)O(5))(2-)], performed at helium temperatures with synchrotron radiation. The shortening of the Pt-Pt bond by 0.28(9)A upon excitation is compatible with the proposed mechanism involving promotion of a Pt-Pt antibonding dsigma* electron to a weakly bonding p orbital. The contraction is accompanied by a 3 degree molecular rotation. The time-resolved diffraction technique described here is applicable to reversible light-driven processes in the crystalline solid state.

SELECTION OF CITATIONS
SEARCH DETAIL
...