Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pract Radiat Oncol ; 12(4): e344-e353, 2022.
Article in English | MEDLINE | ID: mdl-35305941

ABSTRACT

PURPOSE: In this study, we applied the failure mode and effects analysis (FMEA) approach to an automated radiation therapy contouring and treatment planning tool to assess, and subsequently limit, the risk of deploying automated tools. METHODS AND MATERIALS: Using an FMEA, we quantified the risks associated with the Radiation Planning Assistant (RPA), an automated contouring and treatment planning tool currently under development. A multidisciplinary team identified and scored each failure mode, using a combination of RPA plan data and experience for guidance. A 1-to-10 scale for severity, occurrence, and detectability of potential errors was used, following American Association of Physicists in Medicine Task Group 100 recommendations. High-risk failure modes were further explored to determine how the workflow could be improved to reduce the associated risk. RESULTS: Of 290 possible failure modes, we identified 126 errors that were unique to the RPA workflow, with a mean risk priority number (RPN) of 56.3 and a maximum RPN of 486. The top 10 failure modes were caused by automation bias, operator error, and software error. Twenty-one failure modes were above the action threshold of RPN = 125, leading to corrective actions. The workflow was modified to simplify the user interface and better training resources were developed, which highlight the importance of thorough review of the output of automated systems. After the changes, we rescored the high-risk errors, resulting in a final mean and maximum RPN of 33.7 and 288, respectively. CONCLUSIONS: We identified 126 errors specific to the automated workflow, most of which were caused by automation bias or operator error, which emphasized the need to simplify the user interface and ensure adequate user training. As a result of changes made to the software and the enhancement of training resources, the RPNs subsequently decreased, showing that FMEA is an effective way to assess and reduce risk associated with the deployment of automated planning tools.


Subject(s)
Healthcare Failure Mode and Effect Analysis , Automation , Humans , Software
2.
J Appl Clin Med Phys ; 18(1): 223-229, 2017 Jan.
Article in English | MEDLINE | ID: mdl-28291911

ABSTRACT

Radiotherapy in a seated position may be indicated for patients who are unable to lie on the treatment couch for the duration of treatment, in scenarios where a seated treatment position provides superior anatomical positioning and dose distributions, or for a low-cost system designed using a fixed treatment beam and rotating seated patient. In this study, we report a novel treatment chair that was constructed to allow for three-dimensional imaging and treatment delivery while ensuring robust immobilization, providing reproducibility equivalent to that in the traditional supine position. Five patients undergoing radiation treatment for head-and-neck cancers were enrolled and were setup in the chair, with immobilization devices created, and then imaged with orthogonal X-rays in a scenario that mimicked radiation treatments (without treatment delivery). Six subregions of the acquired images were rigidly registered to evaluate intra- and interfraction displacement and chair construction. Displacements under conditions of simulated image guidance were acquired by first registering one subregion; the residual displacement of other subregions was then measured. Additionally, we administered a patient questionnaire to gain patient feedback and assess comparison to the supine position. Average inter- and intrafraction displacements of all subregions in the seated position were less than 2 and 3 mm, respectively. When image guidance was simulated, L-R and A-P interfraction displacements were reduced by an average of 1 mm, providing setup of comparable quality to supine setups. The enrolled patients, who had no indication for a seated treatment position, reported no preference in the seated or the supine position. The novel chair design provides acceptable inter- and intrafraction displacement, with reproducibility equivalent to that reported for patients in the supine position. Patient feedback will be incorporated in the refinement of the chair, facilitating treatment of head-and-neck cancer in patients who are unable to lie for the duration of treatment or for use in an economical fixed-beam setup.


Subject(s)
Head and Neck Neoplasms/radiotherapy , Immobilization/instrumentation , Patient Positioning/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Setup Errors/prevention & control , Aged , Head and Neck Neoplasms/diagnostic imaging , Humans , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods , Male , Middle Aged , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods , Reproducibility of Results , Tomography, X-Ray Computed/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...