Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Neuropathol ; 130(5): 699-711, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26433971

ABSTRACT

Immunotherapy is a promising strategy for the treatment of Alzheimer's disease (AD). Antibodies directed against Amyloid Beta (Aß) are able to successfully clear plaques and reverse cognitive deficits in mouse models. Excitement towards this approach has been tempered by high profile failures in the clinic, one key issue has been the development of inflammatory side effects in the brain (ARIAs). New antibodies are entering the clinic for Alzheimer's disease; therefore, it is important to learn all we can from the current generation. In this study, we directly compared 3 clinical candidates in the same pre-clinical model, with the same effector function, for their ability to clear plaques and induce inflammation in the brain. We produced murine versions of the antibodies: Bapineuzumab (3D6), Crenezumab (mC2) and Gantenerumab (chGantenerumab) with an IgG2a constant region. 18-month transgenic APP mice (Tg2576) were injected bilaterally into the hippocampus with 2 µg of each antibody or control. After 7 days, the mice tissue was analysed for clearance of plaques and neuroinflammation by histology and biochemical analysis. 3D6 was the best binder to plaques and in vitro, whilst mC2 bound the least strongly. This translated into 3D6 effectively clearing plaques and reducing the levels of insoluble Aß, whilst chGantenerumab and mC2 did not. 3D6 caused a significant increase in the levels of pro-inflammatory cytokines IL-1ß and TNFα, and an associated increase in microglial expression of CD11B and CD68. chGantenerumab increased pro-inflammatory cytokines and microglial activation, but minimal changes in CD68, as an indicator of phagocytosis. Injection of mC2 did not cause any significant inflammatory changes. Our results demonstrate that the ability of an antibody to clear plaques and induce inflammation is dependent on the epitope and affinity of the antibody.


Subject(s)
Amyloid beta-Peptides/immunology , Antibodies, Monoclonal, Humanized/pharmacology , Antibodies, Monoclonal/pharmacology , Immunologic Factors/pharmacology , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/genetics , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , CD11b Antigen/metabolism , Cell Line , Drug Evaluation, Preclinical , Female , Hippocampus/drug effects , Hippocampus/immunology , Hippocampus/pathology , Humans , Interleukin-1beta/metabolism , Mice, Transgenic , Microglia/drug effects , Microglia/immunology , Microglia/pathology , Neuroimmunomodulation/drug effects , Neuroimmunomodulation/physiology , Plaque, Amyloid/drug therapy , Plaque, Amyloid/immunology , Plaque, Amyloid/pathology , Tumor Necrosis Factor-alpha/metabolism
2.
Front Neurosci ; 8: 235, 2014.
Article in English | MEDLINE | ID: mdl-25191216

ABSTRACT

There are an estimated 18 million Alzheimer's disease (AD) sufferers worldwide and with no disease modifying treatment currently available, development of new therapies represents an enormous unmet clinical need. AD is characterized by episodic memory loss followed by severe cognitive decline and is associated with many neuropathological changes. AD is characterized by deposits of amyloid beta (Aß), neurofibrillary tangles, and neuroinflammation. Active immunization or passive immunization against Aß leads to the clearance of deposits in transgenic mice expressing human Aß. This clearance is associated with reversal of associated cognitive deficits, but these results have not translated to humans, with both active and passive immunotherapy failing to improve memory loss. One explanation for these observations is that certain anti-Aß antibodies mediate damage to the cerebral vasculature limiting the top dose and potentially reducing efficacy. Fc gamma receptors (FcγR) are a family of immunoglobulin-like receptors which bind to the Fc portion of IgG, and mediate the response of effector cells to immune complexes. Data from both mouse and human studies suggest that cross-linking FcγR by therapeutic antibodies and the subsequent pro-inflammatory response mediates the vascular side effects seen following immunotherapy. Increasing evidence is emerging that FcγR expression on CNS resident cells, including microglia and neurons, is increased during aging and functionally involved in the pathogenesis of age-related neurodegenerative diseases. Therefore, we propose that increased expression and ligation of FcγR in the CNS, either by endogenous IgG or therapeutic antibodies, has the potential to induce vascular damage and exacerbate neurodegeneration. To produce safe and effective immunotherapies for AD and other neurodegenerative diseases it will be vital to understand the role of FcγR in the healthy and diseased brain. Here we review the literature on FcγR expression, function and proposed roles in multiple age-related neurological diseases. Lessons can be learnt from therapeutic antibodies used for the treatment of cancer where antibodies have been engineered for optimal efficacy.

SELECTION OF CITATIONS
SEARCH DETAIL
...