Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Anal Toxicol ; 48(4): 197-203, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38581658

ABSTRACT

11-Nor-9-carboxy-Δ9-tetrahydrocannabinol (Δ9-THCCOOH) is the most frequently detected illicit drug metabolite in the military drug testing program. An increasing number of specimens containing unresolved Δ8-THCCOOH prompted the addition of this analyte to the Department of Defense drug testing panel. A method was developed and validated for the quantitative confirmation of the carboxylated metabolites of Δ8- and Δ9-THC in urine samples utilizing automated pipette tip dispersive solid-phase extraction and analysis by liquid chromatography-tandem mass spectrometry (LC-MS-MS). Analytes were separated isocratically over an 8.5-min runtime and detected on an MS-MS equipped with an electrospray ionization source operated in negative mode. A single point calibrator (15 ng/mL) forced through zero demonstrated linearity from 3 to 1,000 ng/mL. Intra- and inter-day precision were ≤9.1%, and bias was within ±14.1% for Δ8-THCCOOH and Δ9-THCCOOH. No interferences were found after challenging the method with different over-the-counter drugs, prescription pharmaceuticals, drugs of abuse and several cannabinoids and cannabinoid metabolites, including Δ10-THCCOOH. Urine specimens presumptively positive by immunoassay (n = 2,939; 50 ng/mL Δ9-THCCOOH cutoff) were confirmed with this analytical method. Δ8-THCCOOH and Δ9-THCCOOH were present together above the 15 ng/mL cutoff in 33% of specimens. However, nearly one-third of the specimens analyzed were positive for Δ8-THCCOOH only. This manuscript describes the first validated automated extraction and confirmation method for Δ8- and Δ9-THCCOOH in urine that provides adequate analyte separation in urine specimens with extreme isomer abundance ratios.


Subject(s)
Dronabinol , Solid Phase Extraction , Substance Abuse Detection , Tandem Mass Spectrometry , Dronabinol/analogs & derivatives , Dronabinol/urine , Humans , Substance Abuse Detection/methods , Chromatography, Liquid , Reproducibility of Results , Illicit Drugs/urine , Limit of Detection , Isomerism , Liquid Chromatography-Mass Spectrometry
2.
J Anal Toxicol ; 41(4): 340-341, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28111370

ABSTRACT

An existing GC-MS method for detecting benzoylecgonine (BZE) in urine was modified by changing derivatizing reagents. This method modification presents a cost-effective alternative derivatization procedure for the detection of BZE in urine by GC-MS. The combination of pentafluoropropanol and acetic anhydride was found to produce the same reaction product for BZE as pentafluoropropanol with pentafluoropropionic anhydride, while reducing reagent cost. With no anhydride present, derivatization of BZE by pentafluoropropanol did not occur.


Subject(s)
Cocaine/analogs & derivatives , Illicit Drugs/urine , Substance Abuse Detection/methods , Acetic Anhydrides/chemistry , Cocaine/urine , Fluorocarbons/chemistry , Gas Chromatography-Mass Spectrometry , Humans
3.
J Anal Toxicol ; 38(7): 456-61, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24951536

ABSTRACT

In order to achieve chromatographic separation, urine samples shown to be initially positive for amphetamines and methamphetamines in US Department of Defense immunoassays are derivatized with R-(-)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride (R-(-)-MTPA) prior to gas chromatography-electron impact-mass spectrometry (GC-EI-MS) analysis. Phentermine, a member of the phenethylamine class of drugs and a common appetite suppressant, interferes with GC-EI-MS assays of R-(-)-MTPA-derivatized d-amphetamine, degrading the chromatography of the internal standard and analyte ions and skewing concentration calculations. Additionally, when specimens with high concentrations of l-methamphetamine are derivatized with R-(-)-MTPA, signal peaks have the potential to be misidentified by integration software as d-methamphetamine. We have found that replacing R-(-) MTPA with (S)-(+)-α-methoxy-α-(trifluoromethyl)phenylacetyl chloride reduces phentermine interference problems related to internal standard chromatography, reduces the possibility of concentrated l-methamphetamine peaks being misidentified by integration software, improves resolution of d-methamphetamine in the presence of high l-methamphetamine concentrations, and is a cost-neutral change that can be applied to current amphetamines GC-EI-MS methods without the need for method modification.


Subject(s)
Amphetamines/urine , Gas Chromatography-Mass Spectrometry/methods , Phentermine/urine , Phenylacetates/chemistry , Substance Abuse Detection/methods , Amphetamines/chemistry , Humans , Methamphetamine/chemistry , Methamphetamine/urine , Military Personnel , Reference Standards , Reproducibility of Results , Sensitivity and Specificity , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL
...