Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790399

ABSTRACT

Opioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. The present study investigated the impact of advanced age and biological sex on opioid signaling in the ventrolateral periaqueductal gray (vlPAG) in the presence of chronic inflammatory pain. Assays measuring µ-opioid receptor (MOR) radioligand binding, GTPγS binding, receptor phosphorylation, cAMP inhibition, and regulator of G-protein signaling (RGS) protein expression were performed on vlPAG tissue from adult (2-3 months) and aged (16-18 months) male and female rats. Persistent inflammatory pain was induced by intraplantar injection of complete Freund's adjuvant (CFA). Adult males exhibited the highest MOR binding potential (BP) and highest G-protein activation (activation efficiency ratio) in comparison to aged males and females (adult and aged). No impact of advanced age or sex on MOR phosphorylation state was observed. DAMGO-induced cAMP inhibition was highest in the vlPAG of adult males compared with aged males and females (adult and aged). vlPAG levels of RGS4 and RGS9-2, critical for terminating G-protein signaling, were assessed using RNAscope. Adult rats (both males and females) exhibited lower levels of vlPAG RGS4 and RGS9-2 mRNA expression compared with aged males and females. The observed age-related reductions in vlPAG MOR BP, G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in RGS4 and RGS9-2 vlPAG expression, provide potential mechanisms whereby the potency of opioids is decreased in the aged population.SIGNIFICANCE STATEMENTOpioids have decreased analgesic potency (but not efficacy) in aged rodents compared with adults; however, the neural mechanisms underlying this attenuated response are not yet known. In the present study, we observed age-related reductions in ventrolateral periaqueductal gray (vlPAG) µ-opioid receptor (MOR) binding potential (BP), G-protein activation efficiency, and cAMP inhibition, along with the observed age-related increases in regulator of G-protein signaling (RGS)4 and RGS9-2 vlPAG expression, providing potential mechanisms whereby the potency of opioids is decreased in the aged population. These coordinated decreases in opioid receptor signaling may explain the previously reported reduced potency of opioids to produce pain relief in females and aged rats.

2.
Neurobiol Aging ; 98: 78-87, 2021 02.
Article in English | MEDLINE | ID: mdl-33249376

ABSTRACT

The present study investigated the impact of advanced age on morphine modulation of persistent inflammatory pain in male and female rats. The impact of age, sex, and pain on µ-opioid receptor (MOR) expression and binding in the ventrolateral periaqueductal gray (vlPAG) was also examined using immunohistochemistry and receptor autoradiography. Intraplantar administration of complete Freund's adjuvant induced comparable levels of edema and hyperalgesia in adult (2-3 mos) and aged (16-18 mos) male and female rats. Morphine potency was highest in adult males, with a greater than two-fold increase in morphine EC50 observed in adult versus aged males (3.83 mg/kg vs. 10.16 mg/kg). Adult and aged female rats also exhibited significantly higher EC50 values (7.76 mg/kg and 8.74 mg/kg, respectively) than adult males. The upward shift in EC50 from adult to aged males was paralleled by a reduction in vlPAG MOR expression and binding. The observed age-related reductions in morphine potency and vlPAG MOR expression and binding have significant implications in pain management in the aged population.


Subject(s)
Aging/metabolism , Aging/physiology , Hyperalgesia/metabolism , Mesencephalon/metabolism , Morphine/metabolism , Receptors, Opioid, mu/metabolism , Aging/genetics , Animals , Female , Gene Expression , Male , Morphine/pharmacology , Pain Management , Protein Binding , Rats , Receptors, Opioid, mu/genetics , Sex Characteristics
3.
Brain Behav Immun ; 67: 218-229, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28890156

ABSTRACT

The mammalian fetus develops in a largely sterile environment, and direct exposure to a complex microbiota does not occur until birth. We took advantage of this to examine the effect of the microbiota on brain development during the first few days of life. The expression of anti- and pro-inflammatory cytokines, developmental cell death, and microglial colonization in the brain were compared between newborn conventionally colonized mice and mice born in sterile, germ-free (GF) conditions. Expression of the pro-inflammatory cytokines interleukin 1ß and tumor necrosis factor α was markedly suppressed in GF newborns. GF mice also had altered cell death, with some regions exhibiting higher rates (paraventricular nucleus of the hypothalamus and the CA1 oriens layer of the hippocampus) and other regions exhibiting no change or lower rates (arcuate nucleus of the hypothalamus) of cell death. Microglial labeling was elevated in GF mice, due to an increase in both microglial cell size and number. The changes in cytokine expression, cell death and microglial labeling were evident on the day of birth, but were absent on embryonic day 18.5, approximately one-half day prior to expected delivery. Taken together, our results suggest that direct exposure to the microbiota at birth influences key neurodevelopmental events and does so within hours. These findings may help to explain some of the behavioral and neurochemical alterations previously seen in adult GF mice.


Subject(s)
Brain/growth & development , Cell Death , Encephalitis/microbiology , Microbiota , Microglia/physiology , Neurons/physiology , Animals , Brain/microbiology , Encephalitis/metabolism , Female , Inflammation Mediators/metabolism , Male , Mice , Microglia/microbiology , Neurons/microbiology , Pregnancy
4.
Curr Opin Behav Sci ; 23: 183-190, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30906823

ABSTRACT

Chronic pain is a debilitating condition that impacts tens of millions each year, resulting in lost wages for workers and exacting considerable costs in health care and rehabilitation. A thorough understanding of the neural mechanisms underlying pain and analgesia is critical to facilitate the development of therapeutic strategies and personalized medicine. Clinical and epidemiological studies report that women experience greater levels of pain than men and have higher rates of pain-related disorders. Studies in both rodents and humans report sex differences in the anatomical and physiologic properties of the descending antinociceptive circuit, mu opioid receptor (MOR) expression and binding, morphine metabolism, and immune system activation, all of which likely contribute to the observed sex differences in pain and opioid analgesia. Although more research is needed to elucidate the underlying mechanisms, these sex differences present potential therapeutic targets to optimize pain management strategies for both sexes.

SELECTION OF CITATIONS
SEARCH DETAIL
...