Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 18(12): 1309-1314, 2019 12.
Article in English | MEDLINE | ID: mdl-31451781

ABSTRACT

Metallic transition metal dichalcogenides (TMDs)1-8 are good catalysts for the hydrogen evolution reaction (HER). The overpotential and Tafel slope values of metallic phases and edges9 of two-dimensional (2D) TMDs approach those of Pt. However, the overall current density of 2D TMD catalysts remains orders of magnitude lower (~10-100 mA cm-2) than industrial Pt and Ir electrolysers (>1,000 mA cm-2)10,11. Here, we report the synthesis of the metallic 2H phase of niobium disulfide with additional niobium (2H Nb1+xS2, where x is ~0.35)12 as a HER catalyst with current densities of >5,000 mA cm-2 at ~420 mV versus a reversible hydrogen electrode. We find the exchange current density at 0 V for 2H Nb1.35S2 to be ~0.8 mA cm-2, corresponding to a turnover frequency of ~0.2 s-1. We demonstrate an electrolyser based on a 2H Nb1+xS2 cathode that can generate current densities of 1,000 mA cm-2. Our theoretical results reveal that 2H Nb1+xS2 with Nb-terminated surface has free energy for hydrogen adsorption that is close to thermoneutral, facilitating HER. Therefore, 2H Nb1+xS2 could be a viable catalyst for practical electrolysers.

2.
ACS Nano ; 13(9): 9958-9964, 2019 Sep 24.
Article in English | MEDLINE | ID: mdl-31398001

ABSTRACT

Single atom catalysts provide exceptional activity. However, measuring the intrinsic catalytic activity of a single atom in real electrochemical environments is challenging. Here, we report the activity of a single vacancy for electrocatalytically evolving hydrogen in two-dimensional (2D) MoS2. Surprisingly, we find that the catalytic activity per vacancy is not constant but increases with its concentration, reaching a sudden peak in activity at 5.7 × 1014 cm-2 where the intrinsic turn over frequency and Tafel slope of a single atomic vacancy was found to be ∼5 s-1 and 44 mV/dec, respectively. At this vacancy concentration, we also find a local strain of ∼3% and a semiconductor to metal transition in 2D MoS2. Our results suggest that, along with increasing the number of active sites, engineering the local strain and electrical conductivity of catalysts is essential in increasing their activity.

3.
Adv Mater ; 29(4)2017 Jan.
Article in English | MEDLINE | ID: mdl-27869345

ABSTRACT

Integration of organic/inorganic hybrid perovskites with metallic or semiconducting phases of 2D MoS2 nanosheets via solution processing is demonstrated. The results show that the collection of charge carriers is strongly dependent on the electronic properties of the 2D MoS2 with metallic MoS2 showing high responsivity and the semiconducting phase exhibiting high on/off ratios.

4.
Science ; 353(6306): 1413-1416, 2016 09 23.
Article in English | MEDLINE | ID: mdl-27708034

ABSTRACT

Efficient exfoliation of graphite in solutions to obtain high-quality graphene flakes is desirable for printable electronics, catalysis, energy storage, and composites. Graphite oxide with large lateral dimensions has an exfoliation yield of ~100%, but it has not been possible to completely remove the oxygen functional groups so that the reduced form of graphene oxide (GO; reduced form: rGO) remains a highly disordered material. Here we report a simple, rapid method to reduce GO into pristine graphene using 1- to 2-second pulses of microwaves. The desirable structural properties are translated into mobility values of >1000 square centimeters per volt per second in field-effect transistors with microwave-reduced GO (MW-rGO) as the channel material and into particularly high activity for MW-rGO catalyst support toward oxygen evolution reactions.

5.
Nat Mater ; 15(9): 1003-9, 2016 09.
Article in English | MEDLINE | ID: mdl-27295098

ABSTRACT

The excellent catalytic activity of metallic MoS2 edges for the hydrogen evolution reaction (HER) has led to substantial efforts towards increasing the edge concentration. The 2H basal plane is less active for the HER because it is less conducting and therefore possesses less efficient charge transfer kinetics. Here we show that the activity of the 2H basal planes of monolayer MoS2 nanosheets can be made comparable to state-of-the-art catalytic properties of metallic edges and the 1T phase by improving the electrical coupling between the substrate and the catalyst so that electron injection from the electrode and transport to the catalyst active site is facilitated. Phase-engineered low-resistance contacts on monolayer 2H-phase MoS2 basal plane lead to higher efficiency of charge injection in the nanosheets so that its intrinsic activity towards the HER can be measured. We demonstrate that onset potentials and Tafel slopes of ∼-0.1 V and ∼50 mV per decade can be achieved from 2H-phase catalysts where only the basal plane is exposed. We show that efficient charge injection and the presence of naturally occurring sulfur vacancies are responsible for the observed increase in catalytic activity of the 2H basal plane. Our results provide new insights into the role of contact resistance and charge transport on the performance of two-dimensional MoS2 nanosheet catalysts for the HER.

6.
Chemphyschem ; 14(10): 2270-6, 2013 Jul 22.
Article in English | MEDLINE | ID: mdl-23512241

ABSTRACT

Niobium-modified TiO2 hierarchical spherical micrometer-size particles, which consist of many nanowires, are synthesized by solvothermal synthesis and studied as photoelectrodes for water photo-oxidation and dye-sensitized solar cell (DSSC) applications. Incorporation of Nb leads to a rutile-to-anatase TiO2 phase transition in the TiO2 hierarchical spheres (HSs), with the anatase percentage increasing from 0% for the pristine TiO2 HSs to 47.6% for the 1.82 at.% Nb-incorporated TiO2 sample. Incorporation of Nb leads to significant improvements in water photo-oxidation with the photocurrents reaching 70.5 µA cm(-2) at 1.23 V versus the reversible hydrogen electrode, compared with 28.3 µA cm(-2) for the pristine TiO2 sample. The photoconversion efficiency of Nb:TiO2 HS-based DSSCs reaches 6.09±0.15% at 0.25 at.% Nb, significantly higher than that for the pristine TiO2 HS cells (3.99±0.02%). In addition, the incident-photon-to-current efficiency spectra for DSSCs show that employing TiO2 and Nb:TiO2 HSs provides better light harvesting, especially of long-wavelength photons, than anatase TiO2 nanoparticle-based DSSCs.


Subject(s)
Electric Power Supplies , Microspheres , Niobium/chemistry , Solar Energy , Titanium/chemistry , Electrodes , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...