Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Neurosci ; 43(43): 7084-7100, 2023 10 25.
Article in English | MEDLINE | ID: mdl-37669863

ABSTRACT

The RNA modification N6-methyladenosine (m6A) regulates the interaction between RNA and various RNA binding proteins within the nucleus and other subcellular compartments and has recently been shown to be involved in experience-dependent plasticity, learning, and memory. Using m6A RNA-sequencing, we have discovered a distinct population of learning-related m6A- modified RNAs at the synapse, which includes the long noncoding RNA metastasis-associated lung adenocarcinoma transcript 1 (Malat1). RNA immunoprecipitation and mass spectrometry revealed 12 new synapse-specific learning-induced m6A readers in the mPFC of male C57/BL6 mice, with m6A-modified Malat1 binding to a subset of these, including CYFIP2 and DPYSL2. In addition, a cell type- and synapse-specific, and state-dependent, reduction of m6A on Malat1 impairs fear-extinction memory; an effect that likely occurs through a disruption in the interaction between Malat1 and DPYSL2 and an associated decrease in dendritic spine formation. These findings highlight the critical role of m6A in regulating the functional state of RNA during the consolidation of fear-extinction memory, and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.SIGNIFICANCE STATEMENT We have discovered that learning-induced m6A-modified RNA (including the long noncoding RNA, Malat1) accumulates in the synaptic compartment. We have identified several new m6A readers that are associated with fear extinction learning and demonstrate a causal relationship between m6A-modified Malat1 and the formation of fear-extinction memory. These findings highlight the role of m6A in regulating the functional state of an RNA during memory formation and expand the repertoire of experience-dependent m6A readers in the synaptic compartment.


Subject(s)
Fear , RNA, Long Noncoding , Animals , Male , Mice , Extinction, Psychological , Fear/physiology , Learning/physiology , RNA, Long Noncoding/metabolism , Synapses/metabolism
2.
J Comp Neurol ; 529(8): 1849-1862, 2021 06.
Article in English | MEDLINE | ID: mdl-33104234

ABSTRACT

Environmentally enriched housing conditions can increase performance on cognitive tasks in APP/PS1 mice; however, the potential effects of environmental enrichment (EE) on disease modification in terms of pathological change are inconclusive. We hypothesized that previous contrasting findings may be attributable to regional differences in susceptibility to amyloid beta (Aß) plaque deposition in cortical regions that are functionally associated with EE. We characterized fibrillar plaque deposition in 6, 12, and 18-22 months old APP/PS1 mice in the prefrontal (PFC), somatosensory (SS2), and primary motor cortex (M1). We found a significant increase in plaque load between 6 and 12 months in all regions. In animals over 12 months, only the PFC region continued to significantly accumulate plaques. Additionally, 12 months old animals subjected to 6 months of EE showed improved spatial navigation and had significantly fewer plaques in M1 and SS2, but not in the PFC. These findings suggest that the PFC region is selectively susceptible to Aß deposition and less responsive to the attenuating effects of EE. In contrast, M1 and SS2 regions plateau with respect to Aß deposition by 12 months of age and are susceptible to amyloid pathology modification by midlife EE.


Subject(s)
Cerebral Cortex/pathology , Housing Quality , Housing, Animal , Plaque, Amyloid/pathology , Amyloid beta-Protein Precursor/genetics , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic
3.
Sci Rep ; 8(1): 4016, 2018 03 05.
Article in English | MEDLINE | ID: mdl-29507375

ABSTRACT

Repetitive transcranial magnetic stimulation (rTMS) is commonly used to modulate cortical plasticity in clinical and non-clinical populations. Clinically, rTMS is delivered to targeted regions of the cortex at high intensities (>1 T). We have previously shown that even at low intensities, rTMS induces structural and molecular plasticity in the rodent cortex. To determine whether low intensity rTMS (LI-rTMS) alters behavioural performance, daily intermittent theta burst LI-rTMS (120 mT) or sham was delivered as a priming or consolidating stimulus to mice completing 10 consecutive days of skilled reaching training. Relative to sham, priming LI-rTMS (before each training session), increased skill accuracy (~9%) but did not alter the rate of learning over time. In contrast, consolidating LI-rTMS (after each training session), resulted in a small increase in the rate of learning (an additional ~1.6% each day) but did not alter the daily skill accuracy. Changes in behaviour with LI-rTMS were not accompanied with long lasting changes in brain-derived neurotrophic factor (BDNF) expression or in the expression of plasticity markers at excitatory and inhibitory synapses for either priming or consolidation groups. These results suggest that LI-rTMS can alter specific aspects of skilled motor learning in a manner dependent on the timing of intervention.


Subject(s)
Learning , Motor Activity , Transcranial Magnetic Stimulation/methods , Animals , Brain-Derived Neurotrophic Factor/metabolism , Male , Mice , Mice, Inbred C57BL
SELECTION OF CITATIONS
SEARCH DETAIL
...