Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Rep ; 23(5): 1259-1274, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29719243

ABSTRACT

High-throughput electron microscopy has started to reveal synaptic connectivity maps of single circuits and whole brain regions, for example, in the Drosophila olfactory system. However, efficacy, timing, and frequency tuning of synaptic vesicle release are also highly diversified across brain synapses. These features critically depend on the nanometer-scale coupling distance between voltage-gated Ca2+ channels (VGCCs) and the synaptic vesicle release machinery. Combining light super resolution microscopy with in vivo electrophysiology, we show here that two orthogonal scaffold proteins (ELKS family Bruchpilot, BRP, and Syd-1) cluster-specific (M)Unc13 release factor isoforms either close (BRP/Unc13A) or further away (Syd-1/Unc13B) from VGCCs across synapses of the Drosophila olfactory system, resulting in different synapse-characteristic forms of short-term plasticity. Moreover, BRP/Unc13A versus Syd-1/Unc13B ratios were different between synapse types. Thus, variation in tightly versus loosely coupled scaffold protein/(M)Unc13 modules can tune synapse-type-specific release features, and "nanoscopic molecular fingerprints" might identify synapses with specific temporal features.


Subject(s)
Drosophila Proteins/metabolism , GTPase-Activating Proteins/metabolism , Membrane Proteins/metabolism , Mushroom Bodies , Nerve Tissue Proteins/metabolism , Synaptic Vesicles , Animals , Drosophila melanogaster , Mushroom Bodies/metabolism , Mushroom Bodies/ultrastructure , Synaptic Vesicles/metabolism , Synaptic Vesicles/ultrastructure
2.
PLoS Biol ; 14(9): e1002563, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27684064

ABSTRACT

Memories are assumed to be formed by sets of synapses changing their structural or functional performance. The efficacy of forming new memories declines with advancing age, but the synaptic changes underlying age-induced memory impairment remain poorly understood. Recently, we found spermidine feeding to specifically suppress age-dependent impairments in forming olfactory memories, providing a mean to search for synaptic changes involved in age-dependent memory impairment. Here, we show that a specific synaptic compartment, the presynaptic active zone (AZ), increases the size of its ultrastructural elaboration and releases significantly more synaptic vesicles with advancing age. These age-induced AZ changes, however, were fully suppressed by spermidine feeding. A genetically enforced enlargement of AZ scaffolds (four gene-copies of BRP) impaired memory formation in young animals. Thus, in the Drosophila nervous system, aging AZs seem to steer towards the upper limit of their operational range, limiting synaptic plasticity and contributing to impairment of memory formation. Spermidine feeding suppresses age-dependent memory impairment by counteracting these age-dependent changes directly at the synapse.

3.
J Med Chem ; 54(20): 7150-64, 2011 Oct 27.
Article in English | MEDLINE | ID: mdl-21879757

ABSTRACT

2-Amino-4-oxo-6-substituted pyrrolo[2,3-d]pyrimidine antifolates with a thienoyl side chain (compounds 1-3, respectively) were synthesized for comparison with compound 4, the previous lead compound of this series. Conversion of hydroxyl acetylen-thiophene carboxylic esters to thiophenyl-α-bromomethylketones and condensation with 2,4-diamino-6-hydroxypyrimidine afforded the 6-substituted pyrrolo[2,3-d]pyrimidine compounds of type 18 and 19. Coupling with l-glutamate diethyl ester, followed by saponification, afforded 1-3. Compound 3 selectively inhibited the proliferation of cells expressing folate receptors (FRs) α or ß, or the proton-coupled folate transporter (PCFT), including KB and IGROV1 human tumor cells, much more potently than 4. Compound 3 was more inhibitory than 4 toward ß-glycinamide ribonucleotide formyltransferase (GARFTase). Both 3 and 4 depleted cellular ATP pools. In SCID mice with IGROV1 tumors, 3 was more efficacious than 4. Collectively, our results show potent antitumor activity for 3 in vitro and in vivo, associated with its selective membrane transport by FRs and PCFT over RFC and inhibition of GARFTase, clearly establishing the 3-atom bridge as superior to the 1-, 2-, and 4-atom bridge lengths for the activity of this series.


Subject(s)
Antineoplastic Agents/chemical synthesis , Folate Receptor 1/metabolism , Folate Receptor 2/metabolism , Folic Acid Antagonists/chemical synthesis , Glutamates/chemical synthesis , Phosphoribosylglycinamide Formyltransferase/antagonists & inhibitors , Proton-Coupled Folate Transporter/metabolism , Pyrimidines/chemical synthesis , Pyrimidinones/chemical synthesis , Reduced Folate Carrier Protein/metabolism , Adenosine Triphosphate/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Drug Screening Assays, Antitumor , Female , Folic Acid Antagonists/chemistry , Folic Acid Antagonists/pharmacology , Glutamates/chemistry , Glutamates/pharmacology , Humans , Mice , Mice, SCID , Neoplasm Transplantation , Oocytes/drug effects , Oocytes/physiology , Patch-Clamp Techniques , Pyrimidines/chemistry , Pyrimidines/pharmacology , Pyrimidinones/chemistry , Pyrimidinones/pharmacology , Stereoisomerism , Structure-Activity Relationship , Transplantation, Heterologous , Xenopus
4.
Am J Physiol Cell Physiol ; 299(5): C1153-61, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20686069

ABSTRACT

The proton-coupled folate transporter (PCFT-SLC46A1) is required for intestinal folate absorption and is mutated in the autosomal recessive disorder, hereditary folate malabsorption (HFM). This report characterizes properties and requirements of the R376 residue in PCFT function, including a R376Q mutant associated with HFM. Gln, Cys, and Ala substitutions resulted in markedly impaired transport of 5-formyltetrahydrofolate (5-FTHF) and 5-methyltetrahydrofolate (5-MTHF) due to an increase in K(m) and decrease in V(max) in HeLa R1-11 transfectants lacking endogenous folate transport function. In contrast, although the influx K(m) for pemetrexed was increased, transport was fully preserved at saturating concentrations and enhanced for the like-charged R376K- and R376H-PCFT. Pemetrexed and 5-FTHF influx mediated by R376Q-PCFT was markedly decreased at pH 5.5 compared with wild-type PCFT. However, while pemetrexed transport was substantially preserved at low pH (4.5-5.0), 5-FTHF transport remained very low. Electrophysiological studies in Xenopus oocytes demonstrated that 1) the R376Q mutant, like wild-type PCFT, transports protons in the absence of folate substrate, and in this respect has channel-like properties; and 2) the influx K(m) mediated by R376Q-PCFT is increased for 5-MTHF, 5-FTHF, and pemetrexed. The data suggest that mutation of the R376 residue to Gln impairs proton binding which, in turn, modulates the folate-binding pocket and depresses the rate of conformational alteration of the carrier, a change that appears to be, in part, substrate dependent.


Subject(s)
Amino Acid Substitution , Arginine/metabolism , Folic Acid/metabolism , Glutamine/metabolism , Malabsorption Syndromes , Proton-Coupled Folate Transporter/genetics , Animals , Folic Acid Antagonists , Glutamates/metabolism , Glutamine/genetics , Guanine/analogs & derivatives , Guanine/metabolism , HeLa Cells , Humans , Hydrogen-Ion Concentration , Malabsorption Syndromes/genetics , Malabsorption Syndromes/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Oocytes/cytology , Oocytes/physiology , Patch-Clamp Techniques , Pemetrexed , Proton-Coupled Folate Transporter/metabolism , Protons , Tetrahydrofolates/genetics , Tetrahydrofolates/metabolism , Xenopus laevis
5.
Mol Pharmacol ; 78(4): 577-87, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20601456

ABSTRACT

The proton-coupled folate transporter (PCFT) is a folate-proton symporter with an acidic pH optimum, approximating the microenvironments of solid tumors. We tested 6-substituted pyrrolo[2,3-d]pyrimidine antifolates with one to six carbons in the bridge region for inhibition of proliferation in isogenic Chinese hamster ovary (CHO) and HeLa cells expressing PCFT or reduced folate carrier (RFC). Only analogs with three and four bridge carbons (N-{4-[3-2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)propyl]benzoyl}-L-glutamic acid (compound 2) and N-{4-[4-2-amino-4-oxo-4,7-dihydro-3H-pyrrolo[2,3-d]-pyrimidin-6-yl)butyl]benzoyl}*-L-glutamic acid (compound 3), respectively) were inhibitory, with 2 ≫ 3. Activity toward RFC-expressing cells was negligible. Compound 2 and pemetrexed (Pmx) competed with [(3)H]methotrexate for PCFT transport in PCFT-expressing CHO (R2/hPCFT4) cells from pH 5.5 to 7.2; inhibition increased with decreasing pH. In Xenopus laevis oocytes microinjected with PCFT cRNA, uptake of 2, like that of Pmx, was electrogenic. Cytotoxicity of 2 toward R2/hPCFT4 cells was abolished in the presence of adenosine or 5-amino-4-imidazolecarboxamide, suggesting that glycinamide ribonucleotide formyltransferase (GARFTase) in de novo purine biosynthesis was the primary target. Compound 2 decreased GTP and ATP pools by ∼50 and 75%, respectively. By an in situ GARFTase assay, 2 was ∼20-fold more inhibitory toward intracellular GARFTase than toward cell growth or colony formation. Compound 2 irreversibly inhibited clonogenicity, although this required at least 4 h of exposure. Our results document the potent antiproliferative activity of compound 2, attributable to its efficient cellular uptake by PCFT, resulting in inhibition of GARFTase and de novo purine biosynthesis. Furthermore, they establish the feasibility of selective chemotherapy drug delivery via PCFT over RFC, a process that takes advantage of a unique biological feature of solid tumors.


Subject(s)
Antineoplastic Agents/administration & dosage , Drug Delivery Systems/methods , Folic Acid Antagonists/metabolism , Membrane Transport Proteins/metabolism , Neoplasms/drug therapy , Purines/biosynthesis , Pyrimidines/administration & dosage , Pyrroles/administration & dosage , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , CHO Cells , Cricetinae , Cricetulus , Female , Growth Inhibitors/administration & dosage , Growth Inhibitors/chemistry , Growth Inhibitors/metabolism , HeLa Cells , Humans , Neoplasms/metabolism , Proton-Coupled Folate Transporter , Purines/antagonists & inhibitors , Pyrimidines/chemistry , Pyrimidines/metabolism , Pyrroles/chemistry , Pyrroles/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...