Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Chem Commun (Camb) ; 60(56): 7204-7207, 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38910507

ABSTRACT

Reduction of [Mg(NON)]2 ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) affords Mg(I) species containing NON- and NNO-ligands ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The products of reactions with iPrNCNiPr and CO are consistent with the presence of reducing Mg(I) centres. Extraction with THF affords [K(THF)2]2[(NNO)Mg-Mg(NNO)] with a structurally characterised Mg-Mg bond that was examined using density functional theory.

2.
Chem Commun (Camb) ; 60(7): 881-884, 2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38165276

ABSTRACT

The aluminacyclopropane K[Al(NON)(η-C2H4)] ([NON]2- = [O(SiMe2NDipp)2]2-, Dipp = 2,6-iPr2C6H3) reacts with CO2 and iPrNCNiPr to afford ring-expanded products of C-C bond formation. The latter system undergoes a 1,3-silyl retro-Brook rearrangement of the NON-group, to afford the [NNO]2- ligand ([NNO]2- = [N(Dipp)SiMe2N(Dipp)SiMe2O]2-). The mechanism of transformation was examined by density functional theory (DFT).

3.
Chemistry ; 30(1): e202302999, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37786922

ABSTRACT

A simple sequential addition protocol for the reductive coupling of ketones and aldehydes by a potassium aluminyl grants access to unsymmetrical pinacolate derivatives. Isolation of an aluminium ketyl complex presents evidence for the accessibility of radical species. Product release from the aluminium centre was achieved using an iodosilane, forming the disilylated 1,2-diol and a neutral aluminium iodide, thereby demonstrating the steps required to generate a closed synthetic cycle for pinacol (cross) coupling at an aluminyl anion.

4.
Chemistry ; 29(56): e202301849, 2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37429823

ABSTRACT

Three distinct routes are reported to the soluble, dihydridoaluminate compounds, AM[Al(NONDipp )(H)2 ] (AM=Li, Na, K, Rb, Cs; [NONDipp ]2- =[O(SiMe2 NDipp)2 ]2- ; Dipp=2,6-iPr2 C6 H3 ) starting from the alkali metal aluminyls, AM[Al(NONDipp )]. Direct H2 hydrogenation of the heavier analogues (AM=Rb, Cs) produced the first examples of structurally characterized rubidium and caesium dihydridoaluminates, although harsh conditions were required for complete conversion. Using 1,4-cyclohexadiene (1,4-CHD) as an alternative hydrogen source in transfer hydrogenation reactions provided a lower energy pathway to the full series of products for AM=Li-Cs. A further moderation in conditions was noted for the thermal decomposition of the (silyl)(hydrido)aluminates, AM[Al(NONDipp )(H)(SiH2 Ph)]. Probing the reaction of Cs[Al(NONDipp )] with 1,4-CHD provided access to a novel inverse sandwich complex, [{Cs(Et2 O)}2 {Al(NONDipp )(H)}2 (C6 H6 )], containing the 1,4-dialuminated [C6 H6 ]2- dianion and representing the first time that an intermediate in the commonly utilized oxidation process of 1,4-CHD to benzene has been trapped. The synthetic utility of the newly installed Al-H bonds has been demonstrated by their ability to reduce CO2 under mild conditions to form the bis-formate AM[Al(NONDipp )(O2 CH)2 ] compounds, which exhibit a diverse series of eyecatching bimetallacyclic structures.

5.
Inorg Chem ; 61(49): 19838-19846, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503245

ABSTRACT

We report the oxidative addition of phenylsilane to the complete series of alkali metal (AM) aluminyls [AM{Al(NONDipp)}]2 (AM = Li, Na, K, Rb, and Cs). Crystalline products (1-AM) have been isolated as ether or THF adducts, [AM(L)n][Al(NONDipp)(H)(SiH2Ph)] (AM = Li, Na, K, Rb, L = Et2O, n = 1; AM = Cs, L = THF, n = 2). Further to this series, the novel rubidium rubidiate, [{Rb(THF)4}2(Rb{Al(NONDipp)(H)(SiH2Ph)}2)]+ [Rb{Al(NONDipp)(H)(SiH2Ph)}2]-, was isolated during an attempted recrystallization of Rb[Al(NONDipp)(H)(SiH2Ph)] from a hexane/THF mixture. Structural and spectroscopic characterizations of the series 1-AM confirm the presence of µ-hydrides that bridge the aluminum and alkali metals (AM), with multiple stabilizing AM···π(arene) interactions to either the Dipp- or Ph-substituents. These products form a complete series of soluble, alkali metal (hydrido) aluminates that present a platform for further reactivity studies.


Subject(s)
Metals, Alkali , Metals, Alkali/chemistry , Sodium/chemistry , Lithium , Rubidium/chemistry , Ions
6.
Chem Commun (Camb) ; 58(72): 10091-10094, 2022 Sep 08.
Article in English | MEDLINE | ID: mdl-35997148

ABSTRACT

The reaction of compounds containing Al-Mg and Al-Zn bonds with N2O enabled isolation of the corresponding Al(µ-O)M complexes. Electronic structure analysis identified largely ionic Al-O and O-M bonds, featuring an anionic µ-oxo centre. Reaction with CO2 confirmed that these species correspond to the proposed intermediates in the formation of µ-carbonate compounds.

7.
Inorg Chem ; 60(11): 8293-8303, 2021 Jun 07.
Article in English | MEDLINE | ID: mdl-33988988

ABSTRACT

We report the synthesis of aromatic germanimines [(HMDS)2Ge═NAr] (Ar = Ph, Mes, Dipp; Mes = 2,4,6-Me3C6H2, Dipp = 2,6-iPr2C6H3) and an investigation into their associated reactivity. [(HMDS)2Ge═NPh] decomposes above -30 °C, while [(HMDS)2Ge═NDipp] engages in an intramolecular reaction at 60 °C. [(HMDS)2Ge═NMes] was shown to rearrange via a 1,3-silyl migration to give [(HMDS){(SiMe3)(Mes)N}Ge(NSiMe3)] in a 1:7 equilibrium mixture at room temperature. These latter germanimines react with unsaturated polar substrates such as CO2, ketones, and arylisocyanate via a [2 + 2] cycloaddition pathway.

8.
Chemistry ; 26(12): 2606-2609, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-31863493

ABSTRACT

Addition of MesN3 (Mes=2,4,6-Me3 C6 H2 ) to germylene [(NONtBu )Ge] (NONtBu =O(SiMe2 NtBu)2 ) (1) gives germanimine, [(NONtBu )Ge=NMes] (2). Compound 2 behaves as a metalloid, showing reactivity reminiscent of both transition metal-imido complexes, undergoing [2+2] addition with heterocumulenes and protic sources, as well as an activated diene, undergoing a [4+2] cycloaddition, or "metallo"-Diels-Alder, reaction. In the latter case, the diene includes the Ge=N bond and π-system of the Mes substituent, which is reactive towards dienophiles including benzaldehyde, benzophenone, styrene, and phenylacetylene.

9.
Dalton Trans ; 48(23): 8094-8105, 2019 Jun 11.
Article in English | MEDLINE | ID: mdl-31011730

ABSTRACT

A series of zinc complexes bearing the anilido-imino ligand [(o-C6H4{N(C6H3iPr2)}{C(CH3) = NC6H3iPr2})] [(LDipp)ZnX] has been generated. This includes two amide derivatives, [(LDipp)Zn(N{SiMe3}2)] and [(LDipp)Zn(NH{Dipp})] and two phosphanide derivatives, [(LDipp)ZnPCy2] and [(LDipp)ZnPPh2]. The chemistry of the phosphanide complexes towards chalcogens was examined, with sulfur, selenium and tellurium oxidising the phosphorus centre of the dicylohexylphosphanide complex [(LDipp)ZnPCy2] to form [(LDipp)Zn(E)2PCy2] (E = S, Se, Te). Addition of tellurium to the diphenylphosphanide complex [(LDipp)ZnPPh2] results in formation of Ph2PPPh2 and [(LDipp)ZnTeZn(LDipp)]. The absorption and emission properties of these complexes was examined and the quantum yields are highly dependent upon the non-ancillary ligand X.

10.
Chem Asian J ; 14(8): 1230-1237, 2019 Apr 15.
Article in English | MEDLINE | ID: mdl-30618187

ABSTRACT

The fungal metabolite TAN-2483B has a 2,6-trans-relationship across the pyran ring of its furo[3,4-b]pyran-5-one core, which has thwarted previous attempts at its synthesis. We have now developed a chiral pool approach to this core and prepared side-chain analogues of TAN-2483B. The synthesis relies on ring expansion of a reactive furan ring-fused dibromocyclopropane and alkynylation of the resulting pyran. The furan ring is constructed by palladium-catalysed carbonylative lactonisation. Various side-chains are appended through Wittig-type chemistry. The prepared analogues showed micromolar activity towards cancer cell lines HL-60, 1A9 and MCF-7 and certain human disease-relevant kinases, including Bruton's tyrosine kinase (Btk).


Subject(s)
Antineoplastic Agents/chemical synthesis , Lactones/chemistry , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/chemical synthesis , Pyrans/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Cell Line, Tumor , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Lactones/chemical synthesis , Lactones/pharmacology , Molecular Structure , Phosphotransferases/antagonists & inhibitors , Phosphotransferases/metabolism , Protein Kinase Inhibitors/pharmacology , Pyrans/chemical synthesis , Pyrans/pharmacology , Structure-Activity Relationship
11.
Inorg Chem ; 56(24): 14831-14841, 2017 Dec 18.
Article in English | MEDLINE | ID: mdl-29189007

ABSTRACT

The reactivity of tin and lead phosphanido complexes with chalogens is reported. The addition of sulfur to [(BDI)MPCy2] (M = Sn, Pb; BDI = CH{(CH3)CN-2,6-iPr2C6H3}2) results in the formation of phosphinodithioates [(BDI)MSP(S)Cy2] regardless of the conditions; however, when selenium is added to [(BDI)MPCy2], a selenium insertion product, phosphinoselenoite [(BDI)MSePCy2], can be isolated. This compound readily reacts with additional selenium to form the phosphinodiselenoate complex [(BDI)MSeP(Se)Cy2]. In contrast, the addition of selenium to [(BDI)SnP(SiMe3)2] results in the formation of the heavy ether [(BDI)SnSeSiMe3]. Differences in the solution and solid-state molecular species of tin phosphinoselenoite and phosphinodiselenoate complexes were probed using multinuclear solution and solid-state NMR spectroscopy.

12.
Inorg Chem ; 56(5): 3087-3094, 2017 Mar 06.
Article in English | MEDLINE | ID: mdl-28211684

ABSTRACT

The reactivity of germanium phosphanido complexes with elemental chalcogens is reported. Addition of sulfur to [(BDI)GePCy2] (BDI = CH{(CH3)CN-2,6-iPr2C6H3}2) results in oxidation at germanium to form germanium(IV) sulfide [(BDI)Ge(S)PCy2] and oxidation at both germanium and phosphorus to form germanium(IV) sulfide dicylohexylphosphinodithioate complex [(BDI)Ge(S)SP(S)Cy2], whereas addition of tellurium to [(BDI)GePCy2] only gives the chalcogen inserted product, [(BDI)GeTePCy2]. This reactivity is different from that observed between [(BDI)GePCy2] and selenium. Addition of selenium to the diphenylphosphanido germanium complex, [(BDI)GePPh2], results in insertion of selenium into the Ge-P bond to form [(BDI)GeSePCy2] as well as the oxidation at phosphorus to give [(BDI)GeSeP(Se)Ph2]. In contrast, addition of selenium to the bis(trimethylsilyl)phosphanido germanium complex, [(BDI)GeP(SiMe3)2], yields the germanium(IV) selenide [(BDI)Ge(Se)P(SiMe3)2].

13.
Dalton Trans ; 43(36): 13803-14, 2014 Sep 28.
Article in English | MEDLINE | ID: mdl-25109774

ABSTRACT

The ß-diketiminatolead(II)-amido and -anilido complexes, [(BDI)Pb(NRR')] (BDI = [{N(2,6-iPr2C6H3)C(Me)}2CH]; NRR' = NH(2,6-iPr2C6H3), N(iPr)2), react at the amido/anilido nitrogen atom with simple saturated electrophiles such as methyltriflate. Addition of unsaturated electrophiles to these complexes either results in the formation of a complex mixture of products, or in the case of phenylisocyanate, reaction at the γ-carbon of the ß-diketiminato ligand to form a complex that is the net result of a nucleophilic attack by the γ-carbon atom of the ß-diketiminato ligand at the electrophilic carbon centre of phenylisocyanate. As this reactivity contrasts with that of ß-diketiminatolead(II) alkoxo complexes as well as ß-diketiminatotin(II) alkoxo complexes, we examined the reactivity between phenylisocyanate and the isostructural ß-diketiminatotin(II)-amido and -anilido complexes. Reactivity at the γ-carbon was also observed in these systems. Density functional calculations were performed to help understand the differences in reactivity.

14.
Chem Commun (Camb) ; 49(87): 10278-80, 2013 Nov 11.
Article in English | MEDLINE | ID: mdl-24061212

ABSTRACT

Addition of one equivalent of selenium to a germanium-phosphanide complex results in insertion of selenium into the Ge-P bond, not oxidation at germanium or phosphorus. Addition of excess selenium results in oxidation at phosphorus, although of germanium oxidation is still observed.

15.
Inorg Chem ; 51(17): 9403-15, 2012 Sep 03.
Article in English | MEDLINE | ID: mdl-22900884

ABSTRACT

A series of heavier group 14 element, terminal phosphide complexes, M(BDI)(PR(2)) (M = Ge, Sn, Pb; BDI = CH{(CH(3))CN-2,6-iPr(2)C(6)H(3)}(2); R = Ph, Cy, SiMe(3)) have been synthesized. Two different conformations (endo and exo) are observed in the solid-state; the complexes with an endo conformation have a planar coordination geometry at phosphorus (M = Ge, Sn; R = SiMe(3)) whereas the complexes possessing an exo conformation have a pyramidal geometry at phosphorus. Solution-state NMR studies reveal through-space scalar coupling between the tin and the isopropyl groups on the N-aryl moiety of the BDI ligand, with endo and exo exhibiting different J(SnC) values. The magnitudes of the tin-phosphorus and lead-phosphorus coupling constants, |J(SnP)| and |J(PbP)|, differ significantly depending upon the hybridization of the phosphorus atom. For Sn(BDI)(P{SiMe(3)}(2)), |J(SnP)| is the largest reported in the literature, surpassing values attributed to compounds with tin-phosphorus multiple-bonds. Low temperature NMR studies of Pb(BDI)(P{SiMe(3)}(2)) show two species with vastly different |J(PbP)| values, interpreted as belonging to the endo and exo conformations, with sp(2)- and sp(3)-hybridized phosphorus, respectively.


Subject(s)
Organometallic Compounds/chemistry , Phosphorus/chemistry , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemical synthesis , Spectrum Analysis
16.
Inorg Chem ; 51(3): 1544-51, 2012 Feb 06.
Article in English | MEDLINE | ID: mdl-22242862

ABSTRACT

The chemistry of ß-diketiminate germanium alkoxide complexes has been examined and shown to be in sharp contrast to its heavier congeners. For instance, (BDI)GeOR (BDI = [{N(2,6-(i)Pr(2)C(6)H(3))C(Me)}(2)CH], R = (i)Pr, (s)Bu, (t)Bu) does not react with carbon dioxide to form a metal carbonate complex. Addition of aliphatic electrophiles, such as methyl iodide or methyl triflate, results in the net oxidative addition to the germanium, giving cationic tetravalent germanium complexes, [(BDI)Ge(Me)OR][X] (X = I, OTf). An examination of the contrasting reactivities of the alkoxide ligand and the germanium loan pair with Lewis acids yielded the unusual germanium(II)-copper(I) adduct, {µ(2)-Cu(2)I(2)}[(BDI)GeO(t)Bu](2). This complex not only displays a rare example of a divalent Ge-Cu bond, but is the first example in which a planar Cu(2)I(2) diamond core possesses a three-coordinate copper bound to another metal center.

17.
Inorg Chem ; 50(5): 1879-88, 2011 Mar 07.
Article in English | MEDLINE | ID: mdl-21229976

ABSTRACT

A series of terminal tin(II) alkoxides have been synthesized utilizing the bulky ß-diketiminate ligand [{N(2,6-(i)Pr(2)C(6)H(3))-C(Me)}(2)CH] (BDI). The nucleophilicities of these alkoxides have been examined, and unexpected trends were observed. For instance, (BDI)SnOR only reacts with highly activated aliphatic electrophiles such as methyl triflate, but reacts reversibly with carbon dioxide. Both the rate of reaction and the degree of reversibility is dependent upon minor changes in the alkoxide ligand, with the bulkier tert-butoxide ligand displaying slower reactivity than the corresponding isopropyl ligand, although the latter system is a more exergonic reaction. Density Function Theory (DFT) calculations show that the differences in the reversibility of carbon dioxide insertion can be attributed to the ground-state energy differences of tin alkoxides while the rate of reaction is attributed to relative bond strengths of the Sn-O bonds. The mechanism of carbon dioxide insertion is discussed.

18.
Chem Commun (Camb) ; 47(1): 433-5, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-20865190

ABSTRACT

A rapid and versatile method for the preparation of planar chiral [2.2]paracyclophane-derived pyridines and pyridine N-oxides is reported. The potential utility of these compounds in Lewis base catalysis is briefly introduced.


Subject(s)
Lewis Bases/chemistry , Oxides/chemical synthesis , Catalysis , Molecular Structure , Oxides/chemistry , Polycyclic Compounds/chemistry , Pyridines/chemistry , Stereoisomerism
19.
Inorg Chem ; 48(18): 8971-6, 2009 Sep 21.
Article in English | MEDLINE | ID: mdl-19697938

ABSTRACT

A series of terminal lead alkoxides have been synthesized utilizing the bulky beta-diketiminate ligand [{N(2,6-(i)Pr(2)C(6)H(3))C(Me)}(2)CH](-) (BDI). The nucleophilicities of these alkoxides have been examined, and unexpected trends were observed. For instance, (BDI)PbOR reacts with methyl iodide only under forcing conditions yet reacts readily, but reversibly, with carbon dioxide. The degree of reversibility is strongly dependent upon minor changes in the R group. For instance, when R = isopropyl, the reversibility is only observed when the resulting alkyl carbonate is treated with other heterocumulenes; however, when R = tert-butyl, the reversibility is apparent upon any application of reduced pressure to the corresponding alkyl carbonate. The differences in the reversibility of carbon dioxide insertion are attributed to the ground-state energy differences of lead alkoxides. The mechanism of carbon dioxide insertion is discussed.

20.
Dalton Trans ; (31): 3360-2, 2007 Aug 21.
Article in English | MEDLINE | ID: mdl-17664970

ABSTRACT

The successful synthesis of terminal lead aryloxides is shown to be dependent upon reaction conditions, including choice of solvent and alkali metal aryloxide precursor.


Subject(s)
Lead/chemistry , Organometallic Compounds/chemical synthesis , Oxides/chemical synthesis , Indicators and Reagents/chemistry , Lithium/chemistry , Molecular Structure , Organometallic Compounds/chemistry , Oxides/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...