Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Heliyon ; 9(12): e22688, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38058434

ABSTRACT

Machine learning (ML) and citizen science (CS) are increasingly prevalent and rapidly evolving approaches to studying and managing environmental challenges. Municipal and other governance actors can benefit from technology advances in ML and public engagement benefits of CS but must also address validity and other quality assurance concerns in their application to particular management contexts. In this article, we take up the pervasive challenge of urban litter to demonstrate how ML can support CS by providing quality assurance in the regulatory context of California's stormwater program. We gave quantitative CS-collected data to five ML models to compare their predictions of a qualitative, site-specific, multiclass "Litter Index" score, an important regulatory metric typically only assessed by trained experts. XGBoost had the best outcome, with scores of 0.98 for accuracy, precision, recall and F-1. These strong results show that ML can provide a reliable complement to CS assessments and increase quality assurance in a regulatory context. To date, ML and CS have each contributed to litter management in novel ways and we find that their integration can provide important synergies with additional applications in other environmental management domains.

2.
Data Brief ; 38: 107399, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34611537

ABSTRACT

This article describes datasets that were produced in connection with the research article: "Visualizing the United States electricity-water-climate nexus" published in Environmental Modeling and Software (https://doi.org/10.1016/j.envsoft.2021.105128). Data cover 9,961 individual power plants across the United States, including monthly values for electricity generation, greenhouse gas emissions, water withdrawal, and water consumption between 2003 and 2020, as well as projections out to 2050. Data were retrieved from publicly available sources and processed for the purpose of providing plant-level information that can be aggregated according to various user needs. Power plant information was retrieved from the US EPA Facility Registry Service (FRS) web service through the filter of "EIA860." For these plants, we retrieved electricity generation, greenhouse emission, water consumption, and water withdrawal of each plant from heterogeneous data sources, including web services and files, clean and process them, and save them in our database tables. We filled remaining data gaps using a coefficient-based approach. This data article describes metadata and methods for producing the historical and projected datasets in the format of CSV files. The datasets are beneficial for researchers to view electricity generation in the context of emissions and water usage at the granularity of power plants, such as for data analysis and machine learning. These data also can be aggregated to different spatial scales, such as watershed, county, state, and national level, according to different analytical needs. In addition, decision makers can use these data for future energy and resource allocations with the awareness of emission and water constraints.

3.
Environ Sci Technol ; 49(6): 3314-21, 2015 Mar 17.
Article in English | MEDLINE | ID: mdl-25719565

ABSTRACT

California's energy and water systems are interconnected and have evolved in recent decades in response to changing conditions and policy goals. For this analysis, we use a water footprint methodology to examine water requirements of energy products consumed in California between 1990 and 2012. We combine energy production, trade, and consumption data with estimates of the blue and green water footprints of energy products. We find that while California's total annual energy consumption increased by just 2.6% during the analysis period, the amount of water required to produce that energy grew by 260%. Nearly all of the increase in California's energy-related water footprint was associated with water use in locations outside of California, where energy products that the state consumes were, and continue to be, produced. We discuss these trends and the implications for California's future energy system as it relates to climate change and expected water management challenges inside and outside the state. Our analysis shows that while California's energy policies have supported climate mitigation efforts, they have increased vulnerability to climate impacts, especially greater hydrologic uncertainty. More integrated analysis and planning are needed to ensure that climate adaptation and mitigation strategies do not work at cross purposes.


Subject(s)
Climate Change , Conservation of Natural Resources , Energy-Generating Resources , Water Supply , California , Energy-Generating Resources/standards , Water Supply/standards
4.
Environ Manage ; 45(1): 177-91, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19967363

ABSTRACT

This article asks three connected questions: First, does the public view private and public utilities differently, and if so, does this affect attitudes to conservation? Second, do public and private utilities differ in their approaches to conservation? Finally, do differences in the approaches of the utilities, if any, relate to differences in public attitudes? We survey public attitudes in California toward (hypothetical but plausible) voluntary and mandated water conservation, as well as to price increases, during a recent period of shortage. We do this by interviewing households in three pairs of adjacent public and private utilities. We also survey managers of public and private urban water utilities to see if they differ in their approaches to conservation and to their customers. On the user side we do not find pronounced differences, though a minority of customers in all private companies would be more willing to conserve or pay higher prices under a public operator. No respondent in public utility said the reverse. Negative attitudes toward private operators were most pronounced in the pair marked by a controversial recent privatization and a price hike. Nonetheless, we find that California's history of recurrent droughts and the visible role of the state in water supply and drought management undermine the distinction between public and private. Private utilities themselves work to underplay the distinction by stressing the collective ownership of the water source and the collective value of conservation. Overall, California's public utilities appear more proactive and target-oriented in asking their customers to conserve than their private counterparts and the state continues to be important in legitimating and guiding conservation behavior, whether the utility is in public hands or private.


Subject(s)
Conservation of Natural Resources/methods , Public Opinion , Water Supply , Attitude , California , Community Participation , Conservation of Natural Resources/legislation & jurisprudence , Conservation of Natural Resources/trends , Data Collection , Droughts , Interviews as Topic , Public-Private Sector Partnerships , Water Supply/economics , Water Supply/legislation & jurisprudence
SELECTION OF CITATIONS
SEARCH DETAIL
...