Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Adv ; 9(44): eadj4509, 2023 11 03.
Article in English | MEDLINE | ID: mdl-37910609

ABSTRACT

Arabidopsis thaliana has two ribosomal RNA (rRNA) gene loci, nucleolus organizer regions NOR2 and NOR4, whose complete sequences are missing in current genome assemblies. Ultralong DNA sequences assembled using an unconventional approach yielded ~5.5- and 3.9-Mbp sequences for NOR2 and NOR4 in the reference strain, Col-0. The distinct rRNA gene subtype compositions of the NORs enabled the positional mapping of their active and inactive regions, using RNA sequencing to identify subtype-specific transcripts and DNA sequencing to identify subtypes associated with flow-sorted nucleoli. Comparisons of wild-type and silencing-defective plants revealed that most rRNA gene activity occurs in the central region of NOR4, whereas most, but not all, genes of NOR2 are epigenetically silenced. Intervals of low CG and CHG methylation overlap regions where gene activity and gene subtype homogenization are high. Collectively, the data reveal the genetic and epigenetic landscapes underlying nucleolar dominance (differential NOR activity) and implicate transcription as a driver of rRNA gene concerted evolution.


Subject(s)
Arabidopsis , Nucleolus Organizer Region , Nucleolus Organizer Region/genetics , Arabidopsis/genetics , RNA, Ribosomal/genetics , Cell Nucleolus/genetics , Epigenesis, Genetic
2.
Plant J ; 115(5): 1185-1192, 2023 09.
Article in English | MEDLINE | ID: mdl-37228042

ABSTRACT

Nucleolus organizer regions (NORs) are eukaryotic chromosomal loci where ribosomal RNA (rRNA) genes are clustered, typically in hundreds to thousands of copies. Transcription of these rRNA genes by RNA polymerase I and processing of their transcripts results in the formation of the nucleolus, the sub-nuclear domain in which ribosomes are assembled. Approximately 90 years ago, cytogenetic observations revealed that NORs inherited from the different parents of an interspecific hybrid sometimes differ in morphology at metaphase. Fifty years ago, those chromosomal differences were found to correlate with differences in rRNA gene transcription and the phenomenon became known as nucleolar dominance. Studies of the past 30 years have revealed that nucleolar dominance results from selective rRNA gene silencing, involving repressive chromatin modifications, and occurs in pure species as well as hybrids. Recent evidence also indicates that silencing depends on the NOR in which an rRNA gene is located, and not on the gene's sequence. In this perspective, we discuss how our thinking about nucleolar dominance has shifted over time from the kilobase scale of individual genes to the megabase scale of NORs and chromosomes and questions that remain unanswered in the search for a genetic and biochemical understanding of the off switch.


Subject(s)
Cell Nucleolus , RNA, Ribosomal , RNA, Ribosomal/genetics , Cell Nucleolus/genetics , Nucleolus Organizer Region/genetics , Chromosomes
3.
Plant Cell Rep ; 42(6): 1059-1069, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37074465

ABSTRACT

KEY MESSAGE: Genome-wide structural variants we identified and new NOR-linked markers we developed would be useful for future genome-wide association studies (GWAS), and for new gene/trait mapping purposes. Bioinformatic alignment of the assembled genomes of Col-0 and Sha ecotypes of Arabidopsis thaliana revealed ~ 13,000 genome-wide structural variants involving simple insertions or deletions and repeat contractions or expansions. Using some of these structural variants, we developed new, rapid, and low-cost PCR-based molecular markers that are genetically linked to the nucleolus organizer regions (NORs). A. thaliana has two NORs, one each on chromosome 2 (NOR2) and chromosome 4 (NOR4). Both NORs are ~ 4 Mb each, and hundreds of 45S ribosomal RNA (rRNA) genes are tandemly arrayed at these loci. Using previously characterized recombinant inbred lines (RILs) derived from Sha x Col-0 crosses, we validated the utility of the newly developed NOR-linked markers in genetically mapping rRNA genes and the associated telomeres to either NOR2 or NOR4. Lastly, we sequenced Sha genome using Oxford Nanopore Technology (ONT) and used the data to obtain sequences of NOR-telomere junctions, and with the help of RILs, we mapped them as new genetic markers to their respective NORs (NOR2-TEL2N and NOR4-TEL4N). The structural variants obtained from this study would serve as valuable data for genome-wide association studies (GWAS), and to rapidly design more genome-wide genetic (molecular) markers for new gene/trait mapping purposes.


Subject(s)
Arabidopsis , Arabidopsis/genetics , Genome-Wide Association Study , Chromosome Mapping , Base Sequence , Telomere
4.
Front Plant Sci ; 12: 656049, 2021.
Article in English | MEDLINE | ID: mdl-33995452

ABSTRACT

Large regions of nearly identical repeats, such as the 45S ribosomal RNA (rRNA) genes of Nucleolus Organizer Regions (NORs), can account for major gaps in sequenced genomes. To assemble these regions, ultra-long sequencing reads that span multiple repeats have the potential to reveal sets of repeats that collectively have sufficient sequence variation to unambiguously define that interval and recognize overlapping reads. Because individual repetitive loci typically represent a small proportion of the genome, methods to enrich for the regions of interest are desirable. Here we describe a simple method that achieves greater than tenfold enrichment of Arabidopsis thaliana 45S rRNA gene sequences among ultra-long Oxford Nanopore Technology sequencing reads. This method employs agarose-embedded genomic DNA that is subjected to restriction endonucleases digestion using a cocktail of enzymes predicted to be non-cutters of rRNA genes. Most of the genome is digested into small fragments that diffuse out of the agar plugs, whereas rRNA gene arrays are retained. In principle, the approach can also be adapted for sequencing other repetitive loci for which gaps exist in a reference genome.

5.
Plant Cell ; 29(2): 360-376, 2017 02.
Article in English | MEDLINE | ID: mdl-28193737

ABSTRACT

The propagation of epigenetic marks has received a great deal of attention, yet the initiation of epigenetic silencing of a new transgene, virus, or transposable element (TE) remains enigmatic. The overlapping and simultaneous function of multiple silencing mechanisms has obscured this area of investigation. Here, we revealed two broad mechanisms that can initiate silencing independently: identity-based and expression-dependent silencing. We found that identity-based silencing is targeted by 21- to 22-nucleotide or 24-nucleotide small interfering RNAs (siRNAs) generated from previously silenced regions of the genome. By transforming exogenous TEs into Arabidopsis thaliana, we circumvented identity-based silencing, allowing us to isolate and investigate the molecular mechanism of expression-dependent silencing. We found that several siRNA-generating mechanisms all trigger de novo expression-dependent RNA-directed DNA methylation (RdDM) through RNA Polymerase V. In addition, while full-length TEs quickly progress beyond RdDM to heterochromatin formation and the final maintenance methylation state, TE fragments stall at the RdDM phase. Lastly, we found that transformation into a mutant genotype followed by introgression into the wild type does not result in the same level of silencing as direct transformation into the wild type. This demonstrates that the plant genotype during a narrow window of time at TE insertion (or transgene transformation) is key for establishing the transgenerational extent of epigenetic silencing.


Subject(s)
Arabidopsis/genetics , DNA Transposable Elements , Gene Silencing , DNA Methylation , Epigenesis, Genetic , Models, Molecular , Transformation, Genetic
6.
Curr Opin Plant Biol ; 27: 67-76, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26164237

ABSTRACT

In plant genomes the vast majority of transposable elements (TEs) are found in a transcriptionally silenced state that is epigenetically propagated from generation to generation. Although the mechanism of this maintenance of silencing has been well studied, it is now clear that the pathways responsible for maintaining TEs in a silenced state differ from the pathways responsible for initially targeting the TE for silencing. Recently, attention in this field has focused on investigating the molecular mechanisms that initiate and establish TE silencing. Here we review the current models of how TEs are triggered for silencing, the data supporting each model, and the key future questions in this fast moving field.


Subject(s)
DNA Transposable Elements , Gene Expression Regulation, Plant , Gene Silencing , Genome, Plant , Plants/genetics , Models, Genetic
7.
Plant Physiol ; 162(1): 116-31, 2013 May.
Article in English | MEDLINE | ID: mdl-23542151

ABSTRACT

Transposable elements (TEs) are mobile fragments of DNA that are repressed in both plant and animal genomes through the epigenetic inheritance of repressed chromatin and expression states. The epigenetic silencing of TEs in plants is mediated by a process of RNA-directed DNA methylation (RdDM). Two pathways of RdDM have been identified: RNA Polymerase IV (Pol IV)-RdDM, which has been shown to be responsible for the de novo initiation, corrective reestablishment, and epigenetic maintenance of TE and/or transgene silencing; and RNA-dependent RNA Polymerase6 (RDR6)-RdDM, which was recently identified as necessary for maintaining repression for a few TEs. We have further characterized RDR6-RdDM using a genome-wide search to identify TEs that generate RDR6-dependent small interfering RNAs. We have determined that TEs only produce RDR6-dependent small interfering RNAs when transcriptionally active, and we have experimentally identified two TE subfamilies as direct targets of RDR6-RdDM. We used these TEs to test the function of RDR6-RdDM in assays for the de novo initiation, corrective reestablishment, and maintenance of TE silencing. We found that RDR6-RdDM plays no role in maintaining TE silencing. Rather, we found that RDR6 and Pol IV are two independent entry points into RdDM and epigenetic silencing that perform distinct functions in the silencing of TEs: Pol IV-RdDM functions to maintain TE silencing and to initiate silencing in an RNA Polymerase II expression-independent manner, while RDR6-RdDM functions to recognize active Polymerase II-derived TE mRNA transcripts to both trigger and correctively reestablish TE methylation and epigenetic silencing.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Epigenesis, Genetic , Gene Expression Regulation, Plant , RNA, Small Interfering/genetics , RNA-Dependent RNA Polymerase/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , DNA Methylation , DNA Transposable Elements/genetics , DNA-Directed RNA Polymerases/genetics , DNA-Directed RNA Polymerases/metabolism , Gene Expression Profiling , Gene Library , Gene Silencing , Genome, Plant/genetics , Mutation , Oligonucleotide Array Sequence Analysis , Plants, Genetically Modified , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , RNA, Plant/genetics , RNA, Plant/metabolism , RNA, Small Interfering/metabolism , RNA-Dependent RNA Polymerase/metabolism , Sequence Analysis, DNA , Transgenes
SELECTION OF CITATIONS
SEARCH DETAIL
...