Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
1.
Front Microbiol ; 14: 1327239, 2023.
Article in English | MEDLINE | ID: mdl-38239726

ABSTRACT

Background: Human respiratory syncytial virus (RSV) is the leading cause of acute lower respiratory tract infection among infants and young children worldwide, with seasonal peaks in January and February. This study aimed to characterize the RSV samples from a pediatric cohort in the 2021-2022 season in Italy. Methods: In total, 104 samples were collected from pediatric patients attending the "Vittore Buzzi" Children's Hospital in Milan, Italy in the 2021-2022 season. RT-PCR and next-generation sequencing were used to discriminate subgroups and obtain whole genomes. Maximum likelihood and Bayesian phylogenetic methods were used to analyze Italian sequences in the European contest and date Italian clusters. Results: The median age was 78 days, and 76.9% of subjects required hospitalization, with a higher proportion of patients under 3 months of age. An equal proportion of subgroups A (GA2.3.5) and B (GB5.0.5a) was found, with significant differences in length of hospitalization, days of supplemental oxygen treatment, and intravenous hydration duration. Phylogeny highlighted 26 and 37 clusters containing quite the total of Italian sequences for RSV-A and -B, respectively. Clusters presented a tMRCA between December 2011-February 2017 and May 2014-December 2016 for A and B subgroups, respectively. Compared to European sequences, specific mutations were observed in Italian strains. Conclusion: These data confirmed a more severe clinical course of RSV-A, particularly in young children. This study permitted the characterization of recent Italian RSV whole genomes, highlighting the peculiar pattern of mutations that needs to be investigated further and monitored.

2.
J Neurosci Methods ; 363: 109323, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34391792

ABSTRACT

BACKGROUND: Peripheral neuropathy treatment is not always satisfactory. To fill this gap, inferences from bench side are warranted, where morphological and pathogenetic determinations can be performed. Nerve conduction studies (NCS) are ideal to translate results from preclinical to clinical setting. NEW METHODS: We propose a comprehensive 8-minute protocol for sensory-motor neurophysiological assessment, similar to routine clinical practice: sensory proximal and distal caudal nerves, motor caudal nerve, and sensory digital nerve recordings were used and tested in 2 different experimental settings. In Experiment 1 we compared control (CTRL) animals to a severe sensory-motor polyneuropathy (animals treated with vincristine [VCR]), and in Experiment 2 CTRL animals were compared to a mild sensory polyneuropathy (animals treated with oxaliplatin [OHP]). NCS were performed after 1-month of chemotherapy and matched with confirmatory neuropathological analyses. RESULTS: VCR treated animals showed, at NCS, a relevant sensory-motor polyneuropathy ensued at the end of treatment; whereas, OHP animals showed a mild distal sensory neuropathy. These patterns were confirmed by neuropathological analysis. COMPARISON WITH EXISTING METHODS: In literature, the majority of proposed neurophysiological protocols relies mainly on a single nerve testing, rather than a combination of them, and only a few studies tested both caudal and sciatic nerve branches, nevertheless not aiming at fully reproduce clinical protocols (e.g., seeking for length-dependency); to provide evidence of appropriateness of our protocol we applied a gold standard: neuropathology. CONCLUSION: The simple and rapid protocol here presented can be suggested as a good translation outcome measure in preclinical setting.


Subject(s)
Neural Conduction , Peripheral Nervous System Diseases , Animals , Neurophysiology , Peripheral Nerves , Peripheral Nervous System Diseases/drug therapy
3.
Brain Sci ; 11(2)2021 Jan 22.
Article in English | MEDLINE | ID: mdl-33499072

ABSTRACT

Peripheral neuropathies (PNs) are a type of common disease that hampers the quality of life of affected people. Treatment, in most cases, is just symptomatic and often ineffective. To improve drug discovery in this field, preclinical evidence is warranted. In vivo rodent models allow a multiparametric approach to test new therapeutic strategies, since they can allow pathogenetic and morphological studies different from the clinical setting. However, human readouts are warranted to promptly translate data from the bench to the bedside. A feasible solution would be neurophysiology, performed similarly at both sides. We describe a simple protocol that reproduces the standard clinical protocol of a neurophysiology hospital department. We devised the optimal montage for sensory and motor recordings (neurography) in mice, and we also implemented F wave testing and a short electromyography (EMG) protocol at rest. We challenged this algorithm by comparing control animals (BALB/c mice) with a model of mild neuropathy to grasp even subtle changes. The neurophysiological results were confirmed with neuropathology. The treatment group showed all expected alterations. Moreover, the neurophysiology matched the neuropathological analyses. Therefore, our protocol can be suggested to promptly translate data from the bench to the bedside and vice versa.

4.
Int J Mol Sci ; 22(3)2021 Jan 21.
Article in English | MEDLINE | ID: mdl-33494384

ABSTRACT

The onset of chemotherapy-induced peripheral neurotoxicity (CIPN) is a leading cause of the dose reduction or discontinuation of cancer treatment due to sensory symptoms. Paclitaxel (PTX) can cause painful peripheral neuropathy, with a negative impact on cancer survivors' quality of life. While recent studies have shown that neuroinflammation is involved in PTX-induced peripheral neurotoxicity (PIPN), the pathophysiology of this disabling side effect remains largely unclear and no effective therapies are available. Therefore, here we investigated the effects of human intravenous immunoglobulin (IVIg) on a PIPN rat model. PTX-treated rats showed mechanical allodynia and neurophysiological alterations consistent with a severe sensory axonal polyneuropathy. In addition, morphological evaluation showed a reduction of intra-epidermal nerve fiber (IENF) density and evidenced axonopathy with macrophage infiltration, which was more prominent in the distal segment of caudal nerves. Three weeks after the last PTX injection, mechanical allodynia was still present in PTX-treated rats, while the full recovery in the group of animals co-treated with IVIg was observed. At the pathological level, this behavioral result was paralleled by prevention of the reduction in IENF density induced by PTX in IVIg co-treated rats. These results suggest that the immunomodulating effect of IVIg co-treatment can alleviate PIPN neurotoxic manifestations, probably through a partial reduction of neuroinflammation.


Subject(s)
Antineoplastic Agents, Phytogenic/adverse effects , Immunoglobulins, Intravenous/administration & dosage , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/etiology , Paclitaxel/adverse effects , Peripheral Nervous System Diseases/drug therapy , Peripheral Nervous System Diseases/etiology , Animals , Antineoplastic Agents, Phytogenic/therapeutic use , Axons/drug effects , Axons/metabolism , Axons/pathology , Biomarkers , Disease Models, Animal , Disease Susceptibility , Humans , Hyperalgesia/diagnosis , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Macrophages/drug effects , Macrophages/metabolism , Macrophages/pathology , Neurotoxicity Syndromes/diagnosis , Paclitaxel/therapeutic use , Peripheral Nervous System Diseases/diagnosis , Rats , Treatment Outcome
5.
Proc Natl Acad Sci U S A ; 118(4)2021 01 26.
Article in English | MEDLINE | ID: mdl-33468672

ABSTRACT

The pathogenesis of chemotherapy-induced peripheral neuropathy (CIPN) is poorly understood. Here, we report that the CIPN-causing drug bortezomib (Bort) promotes delta 2 tubulin (D2) accumulation while affecting microtubule stability and dynamics in sensory neurons in vitro and in vivo and that the accumulation of D2 is predominant in unmyelinated fibers and a hallmark of bortezomib-induced peripheral neuropathy (BIPN) in humans. Furthermore, while D2 overexpression was sufficient to cause axonopathy and inhibit mitochondria motility, reduction of D2 levels alleviated both axonal degeneration and the loss of mitochondria motility induced by Bort. Together, our data demonstrate that Bort, a compound structurally unrelated to tubulin poisons, affects the tubulin cytoskeleton in sensory neurons in vitro, in vivo, and in human tissue, indicating that the pathogenic mechanisms of seemingly unrelated CIPN drugs may converge on tubulin damage. The results reveal a previously unrecognized pathogenic role for D2 in BIPN that may occur through altered regulation of mitochondria motility.


Subject(s)
Bortezomib/adverse effects , Neoplasms/drug therapy , Peripheral Nervous System Diseases/genetics , Tubulin/genetics , Animals , Antineoplastic Agents/adverse effects , Axons/drug effects , Axons/pathology , Disease Models, Animal , Drosophila melanogaster/genetics , Gene Expression Regulation, Neoplastic/drug effects , HEK293 Cells , Humans , Larva/drug effects , Larva/genetics , Microtubules/drug effects , Microtubules/genetics , Mitochondria/drug effects , Mitochondria/genetics , Mitochondrial Dynamics/drug effects , Mitochondrial Dynamics/genetics , Neoplasms/genetics , Neoplasms/pathology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/pathology , Sensory Receptor Cells/drug effects , Sensory Receptor Cells/pathology , Zebrafish/genetics
6.
Front Pharmacol ; 12: 817236, 2021.
Article in English | MEDLINE | ID: mdl-35126148

ABSTRACT

Chemotherapy-induced peripheral neurotoxicity is a common dose-limiting side effect of several cancer chemotherapeutic agents, and no effective therapies exist. Here we constructed a systems pharmacology model of intracellular signaling in peripheral neurons to identify novel drug targets for preventing peripheral neuropathy associated with proteasome inhibitors. Model predictions suggested the combinatorial inhibition of TNFα, NMDA receptors, and reactive oxygen species should prevent proteasome inhibitor-induced neuronal apoptosis. Dexanabinol, an inhibitor of all three targets, partially restored bortezomib-induced reduction of proximal action potential amplitude and distal nerve conduction velocity in vitro and prevented bortezomib-induced mechanical allodynia and thermal hyperalgesia in rats, including a partial recovery of intraepidermal nerve fiber density. Dexanabinol failed to restore bortezomib-induced decreases in electrophysiological endpoints in rats, and it did not compromise bortezomib anti-cancer effects in U266 multiple myeloma cells and a murine xenograft model. Owing to its favorable safety profile in humans and preclinical efficacy, dexanabinol might represent a treatment option for bortezomib-induced neuropathic pain.

7.
Expert Opin Drug Metab Toxicol ; 17(2): 215-226, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33283553

ABSTRACT

Introduction: One of the most common side effects during vincristine (VCR) use is the establishment of VCR-induced peripheral neuropathy (VIPN). Among several risk factors that can influence the development of VIPN, such as cumulative dose and patient's age, sex, ethnicity, and genetic variants, this review is focused on the genetic variability. Areas covered: A literature research was performed firstly using the following PubMed search string ((((CIPN OR (vincristine AND neurotoxicity OR (vincristine AND neuropathy))) AND (polymorphisms OR (genetic variants OR (genetic factors OR (genetic profile OR (pharmacogenetics OR (genome-wide OR (genetic risk OR (expression genotype))))))))))) but also other relevant papers cited by the selected articles were included. Based on the obtained results, we identified two main categories of genes: genes involved in pharmacokinetics (genes related to metabolism and transport) or pharmacodynamics (genes related to mechanism of action) of VCR. Expert opinion: Despite several clinical retrospective studies investigating the possible correlations between patient genotype and VIPN onset, contrasting and inconsistent results are reported. In conclusion, given the clinical relevance of VIPN, further and more focused research would be fundamental in order to identify genetic variants able to predict its development and to allow a safer management of treated patients.


Subject(s)
Antineoplastic Agents, Phytogenic/adverse effects , Neurotoxicity Syndromes/etiology , Vincristine/adverse effects , Antineoplastic Agents, Phytogenic/administration & dosage , Genotype , Humans , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/genetics , Pharmacogenetics , Polymorphism, Genetic , Risk Factors , Vincristine/administration & dosage
8.
Phys Med ; 81: 9-19, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33310424

ABSTRACT

PURPOSE: To compare the effective dose (ED) and image quality (IQ) of O-arm cone-beam CT (Medtronic, Minneapolis, MN, USA) and Airo multi-slice CT (Brainlab AG, Munich, Germany) for intraoperative-CT (i-CT) in spinal surgery. METHODS: The manufacturer-defined protocols available in the O-arm and Airo systems for three-dimensional lumbar spine imaging were compared. Organ dose was measured both with thermo-luminescent dosimeters and GafChromic films in the Alderson RadiationTherapy anthropomorphic phantom. A subjective analysis was performed by neurosurgeons to compare the clinical IQ of the anthropomorphic phantom images acquired with the different i-CT systems and imaging protocols. Image uniformity, noise, contrast-to-noise-ratio (CNR), and spatial resolution were additionally assessed with the Catphan 504 phantom. RESULTS: O-arm i-CT caused 56% larger ED than Airo due to the high definition (HD) imaging protocol. The noise was larger for O-arm images leading to a lower CNR than that measured for Airo. Moreover, scattering and beam hardening effects were observed in the O-arm images. Better spatial resolution was measured for the O-arm system (9 lp/cm) than for Airo (4 lp/cm). For all the investigated protocols, O-arm was found to be better for identifying anatomical features important for accurate pedicle screw positioning. CONCLUSIONS: According to phantom measurements, the HD protocol of O-arm offered better clinical IQ than Airo but larger ED. The larger noise of O-arm images did not compromise the clinical IQ while the superior spatial resolution of this system allowed a better visibility of anatomical features important for pedicle screw positioning in the lumbar region.


Subject(s)
Imaging, Three-Dimensional , Surgery, Computer-Assisted , Cone-Beam Computed Tomography , Phantoms, Imaging , Radiation Dosage , Tomography, X-Ray Computed
9.
Int J Mol Sci ; 21(19)2020 Sep 28.
Article in English | MEDLINE | ID: mdl-32998392

ABSTRACT

Oxaliplatin-induced peripheral neuropathy is characterized by an acute hyperexcitability syndrome triggered/exacerbated by cold. The mechanisms underlying oxaliplatin-induced peripheral neuropathy are unclear, but the alteration of ion channel expression and activity plays a well-recognized central role. Recently, we found that oxaliplatin leads to cytosolic acidification in dorsal root ganglion (DRG) neurons. Here, we investigated the early impact of oxaliplatin on the proton-sensitive TREK potassium channels. Following a 6-h oxaliplatin treatment, both channels underwent a transcription upregulation that returned to control levels after 42 h. The overexpression of TREK channels was also observed after in vivo treatment in DRG cells from mice exposed to acute treatment with oxaliplatin. Moreover, both intracellular pH and TREK channel transcription were similarly regulated after incubation with amiloride, an inhibitor of the Na+/H+ exchanger. In addition, we studied the role of oxaliplatin-induced acidification on channel behavior, and, as expected, we observed a robust positive modulation of TREK channel activity. Finally, we focused on the impact of this complex modulation on capsaicin-evoked neuronal activity finding a transient decrease in the average firing rate following 6 h of oxaliplatin treatment. In conclusion, the early activation of TREK genes may represent a mechanism of protection against the oxaliplatin-related perturbation of neuronal excitability.


Subject(s)
Antineoplastic Agents/adverse effects , Ganglia, Spinal/drug effects , Neurons/drug effects , Oxaliplatin/adverse effects , Peripheral Nervous System Diseases/genetics , Potassium Channels, Tandem Pore Domain/genetics , Sodium-Hydrogen Exchanger 1/genetics , Action Potentials/drug effects , Action Potentials/physiology , Amiloride/pharmacology , Animals , Capsaicin/pharmacology , Epithelial Sodium Channel Blockers/pharmacology , Ganglia, Spinal/metabolism , Ganglia, Spinal/pathology , Humans , Hydrogen-Ion Concentration/drug effects , Male , Mice , Mice, Inbred BALB C , Models, Biological , Neurons/metabolism , Neurons/pathology , Patch-Clamp Techniques , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/metabolism , Peripheral Nervous System Diseases/pathology , Potassium Channels, Tandem Pore Domain/agonists , Potassium Channels, Tandem Pore Domain/metabolism , Primary Cell Culture , Sodium-Hydrogen Exchanger 1/antagonists & inhibitors , Sodium-Hydrogen Exchanger 1/metabolism , Transcriptional Activation
10.
Antioxidants (Basel) ; 9(9)2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32882796

ABSTRACT

The comments sent by Stehr, Lundstom and Karlsson with reference to our article "Calmangafodipir reduces sensory alterations and prevents intraepidermal nerve fiber loss in a mouse model of oxaliplatin-induced peripheral neurotoxicity" are very interesting, since they suggest possible mechanisms of action of the compound, which might contribute to its protective action [...].

11.
Exp Neurol ; 334: 113458, 2020 12.
Article in English | MEDLINE | ID: mdl-32889007

ABSTRACT

Chemotherapy-induced peripheral neurotoxicity represents one of the most relevant dose-limiting side effects that can affect cancer patients treated with the common antineoplastic agents. Since the severity of neurotoxicity often leads to dose reduction or early cessation of chemotherapy, the investigation of molecular mechanisms underlying chemotherapy-induced peripheral neurotoxicity is an urgent clinical need in order to better understand its physiopathology and find effective strategies for neuroprotection. Several in vivo preclinical models of chemotherapy-induced peripheral neurotoxicity have been developed but a great variability in mouse strain, dose, route of administration of the drug, treatment schedule and assessment of neurotoxicity is observed between the different published studies making difficult the comparison and interpretation of their results. In many of these studies only behavioural tests are used as outcome measures, while possible neurophysiological and neuropathological changes are not evaluated. In this study, focused on experimental oxaliplatin-induced peripheral neurotoxicity, we reproduced and compared four mouse models with very different drug dose (low or high dose-intensity) and treatment schedules (short or long-term treatment), selected from the literature. Using a multimodal assessment based on behavioural, neurophysiological and neuropathological methods, we evidenced remarkable differences in the results obtained in the selected animal models. This work suggests the importance of a multimodal approach including extensive pathological investigation to confirm the behavioural results.


Subject(s)
Antineoplastic Agents/toxicity , Oxaliplatin/toxicity , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/pathology , Animals , Dose-Response Relationship, Drug , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Peripheral Nervous System Diseases/psychology , Random Allocation
12.
Antioxidants (Basel) ; 9(7)2020 Jul 07.
Article in English | MEDLINE | ID: mdl-32645985

ABSTRACT

Oxaliplatin (OHP) is an antineoplastic compound able to induce peripheral neurotoxicity. Oxidative stress has been suggested to be a key factor in the development of OHP-related peripheral neurotoxicity. Mangafodipir, a contrast agent possessing mitochondrial superoxide dismutase (MnSOD)-mimetic activity, has been tested as a cytoprotector in chemotherapy-induced peripheral neurotoxicity (CIPN). Calmangafodipir (PledOx®) has even better therapeutic activity. We investigated a BALB/c mouse model of OHP-related CIPN and the effects of the pre-treatment of calmangafodipir (2.5, 5, or 10 mg/kg intravenously) on sensory perception, and we performed a pathological study on skin biopsies to assess intraepidermal nerve fiber (IENF) density. At the end of the treatments, OHP alone or in pre-treatment with calmangafodipir 2.5 and 10 mg/kg, induced mechanical allodynia and cold thermal hyperalgesia, but calmangafodipir 5 mg/kg prevented these effects. Accordingly, OHP alone or in pre-treatment with calmangafodipir 2.5 and 10 mg/kg, induced a significant reduction in IENF density, but calmangafodipir 5 mg/kg prevented this reduction. These results confirm a protective effect of calmangafodipir against OHP-induced small fiber neuropathy. Interestingly, these results are in agreement with previous observations suggesting a U-shaped effect of calmangafodipir, with the 10 mg/kg dose less effective than the lower doses.

13.
Arch Toxicol ; 94(7): 2517-2522, 2020 07.
Article in English | MEDLINE | ID: mdl-32333051

ABSTRACT

Chemotherapy-Induced Peripheral Neurotoxicity (CIPN) is a severe and long-lasting side effect of anticancer therapy, which can severely impair patients' quality of life. It is a sensory and length-dependent neuropathy, which predominantly affects large myelinated fibers. Easy and reliable monitoring of CIPN in patients is still an unmet clinical need. Since increasing clinical evidence supports the potential use of neurofilament light chain (NfL) as a biomarker of axonal injury, in this study we measured serum NfL levels in animals chronically treated with cisplatin (CDDP) and paclitaxel (PTX), two antineoplastic drugs with different neuronal targets. Wistar rats were treated with CDDP (2 mg/kg i.p. twice/week for 4 weeks) or PTX (10 mg/kg i.v. once/week for 4 weeks). Repeated serum NfL quantification was obtained using the Single Molecule Array (Simoa) technology. The onset and progression of peripheral neurotoxicity were evaluated through neurophysiology, morphological assessments and intraepidermal nerve fibers density quantification. Our results showed that serum NfL measurements correlated with the severity of axonal damage. In fact, both treatments induced serum NfL increase, but higher levels were evidenced in PTX-treated animals, compared with CDDP-treated rats, affected by a milder neurotoxicity. Notably, also the timing of the NfL level increase was associated with the severity of morphological and functional alterations of axonal structure. Therefore, NfL could be a useful biomarker for axonal damage in order to follow the onset and severity of axonal degeneration and possibly limit the occurrence of serious PNS disease.


Subject(s)
Antineoplastic Agents , Axons/metabolism , Cisplatin , Neurofilament Proteins/blood , Neurotoxicity Syndromes/blood , Paclitaxel , Peripheral Nerves/metabolism , Peripheral Nervous System Diseases/blood , Animals , Axons/pathology , Biomarkers/blood , Disease Models, Animal , Female , Neurotoxicity Syndromes/etiology , Neurotoxicity Syndromes/pathology , Peripheral Nerves/pathology , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/pathology , Rats, Wistar , Severity of Illness Index , Up-Regulation
14.
Front Immunol ; 11: 626687, 2020.
Article in English | MEDLINE | ID: mdl-33613570

ABSTRACT

Peripheral neuropathies are characterized by nerves damage and axonal loss, and they could be classified in hereditary or acquired forms. Acquired peripheral neuropathies are associated with several causes, including toxic agent exposure, among which the antineoplastic compounds are responsible for the so called Chemotherapy-Induced Peripheral Neuropathy (CIPN). Several clinical features are related to the use of anticancer drugs which exert their action by affecting different mechanisms and structures of the peripheral nervous system: the axons (axonopathy) or the dorsal root ganglia (DRG) neurons cell body (neuronopathy/ganglionopathy). In addition, antineoplastic treatments may affect the blood brain barrier integrity, leading to cognitive impairment that may be severe and long-lasting. CIPN may affect patient quality of life leading to modification or discontinuation of the anticancer therapy. Although the mechanisms of the damage are not completely understood, several hypotheses have been proposed, among which neuroinflammation is now emerging to be relevant in CIPN pathophysiology. In this review, we consider different aspects of neuro-immune interactions in several CIPN preclinical studies which suggest a critical connection between chemotherapeutic agents and neurotoxicity. The features of the neuroinflammatory processes may be different depending on the type of drug (platinum derivatives, taxanes, vinca alkaloids and proteasome inhibitors). In particular, recent studies have demonstrated an involvement of the immune response (both innate and adaptive) and the stimulation and secretion of mediators (cytokines and chemokines) that may be responsible for the painful symptoms, whereas glial cells such as satellite and Schwann cells might contribute to the maintenance of the neuroinflammatory process in DRG and axons respectively. Moreover, neuroinflammatory components have also been shown in the spinal cord with microglia and astrocytes playing an important role in CIPN development. Taking together, better understanding of these aspects would permit the development of possible strategies in order to improve the management of CIPN.


Subject(s)
Antineoplastic Agents/adverse effects , Cisplatin/adverse effects , Neoplasms/drug therapy , Neuroimmunomodulation/immunology , Peripheral Nervous System Diseases/immunology , Proteasome Inhibitors/adverse effects , Taxoids/adverse effects , Vinca Alkaloids/adverse effects , Antineoplastic Agents/pharmacology , Chemokines/metabolism , Cisplatin/pharmacology , Cognitive Dysfunction/complications , Cytokines/metabolism , Humans , Inflammation/complications , Inflammation/metabolism , Neoplasms/complications , Neuralgia/metabolism , Neuroimmunomodulation/physiology , Proteasome Inhibitors/pharmacology , Quality of Life , Signal Transduction/drug effects , Taxoids/pharmacology , Vinca Alkaloids/pharmacology
15.
Int J Stem Cells ; 13(1): 116-126, 2020 Mar 30.
Article in English | MEDLINE | ID: mdl-31887847

ABSTRACT

BACKGROUND AND OBJECTIVES: Transplantation of pancreatic islets is an intriguing new therapeutic option to face the worldwide spread problem of Type-I diabetes. Currently, its clinical use is limited by several problems, mainly based on the high number of islets required to restore normoglycaemia and by the low survival of the transplanted tissue. A promising attempt to overcome the limits to such an approach was represented by the use of Mesenchymal Stem Cells (MSC). Despite the encouraging results obtained with murine-derived MSC, little is still known about their protective mechanisms. The aim of the present study was to verify the effectiveness, (besides murine MSC), of clinically relevant human-derived MSC (hMSC) on protecting pancreatic islets, thus also shedding light on the putative differences between MSC of different origin. METHODS AND RESULTS: Threefold kinds of co-cultures were therefore in vitro set up (direct, indirect and mixed), to analyze the hMSC effect on pancreatic islet survival and function and to study the putative mechanisms involved. Although in a different way with respect to murine MSC, also human derived cells demonstrated to be effective on protecting pancreatic islet survival. This effect could be due to the release of some trophic factors, such as VEGF and Il-6, and by the reduction of inflammatory cytokine TNF-α. CONCLUSIONS: Therefore, hMSC confirmed their great clinical potential to improve the feasibility of pancreatic islet transplantation therapy against diabetes.

16.
Neuropharmacology ; 164: 107905, 2020 03 01.
Article in English | MEDLINE | ID: mdl-31811874

ABSTRACT

Oxaliplatin (OHP) Induced Peripheral Neurotoxicity (OIPN) is one of the dose-limiting toxicities of the drug and these adverse effects limit cancer therapy with L-OHP, used for colorectal cancer treatment. Acute neurotoxicity consists of symptoms that are the hallmarks of a transient axonal hyperexcitability; chronic neurotoxicity has a clinical picture compatible with a length-dependent sensory neuropathy. Acute OIPN pathogenesis has been linked to sodium voltage-operated channels (Na + VOC) dysfunction and it has been advocated as a possible predisposing factor to chronic neurotoxicity. We tested if topiramate (TPM), a well-known Na + VOC modulator, was able to modify acute as well as chronic OIPN. The project was divided into two parts. In Experiment 1 we tested by means of Nerve Excitability Testing (NET) a cohort of female Wistar rats to assess TPM effects after a single OHP administration (5 mg/kg, iv). In Experiment 2 we assessed TPM effects after chronic OHP treatment (5 mg/kg, 2qw4ws, iv) using NET, nerve conduction studies (NCS), behavioral tests and neuropathology (caudal nerve morphometry and morphology and Intraepidermal Nerve Fiber [IENF] density). In Experiment 1 TPM was able to prevent OHP effects on Na + VOC: OHP treatment induced a highly significant reduction of the sensory nerve's threshold, during the superexcitability period (p-value = 0.008), whereas TPM co-administration prevented this effect. In Experiment 2 we verified that TPM was able to prevent not only acute phenomena, but also to completely prevent chronic OIPN. This latter observation was supported by a multimodal approach: in fact, only OHP group showed altered findings compared to CTRL group at a neurophysiological (proximal caudal nerve sensory nerve action potential [SNAP] amplitude, p-value = 0.001; distal caudal nerve SNAP amplitude, p-value<0.001, distal caudal nerve sensory conduction velocity, p-value = 0.04), behavioral (mechanical threshold, p-value 0.003) and neuropathological levels (caudal nerve fibers density, p-value 0.001; IENF density, p-value <0.001). Our data show that TPM is a promising drug to prevent both acute and chronic OIPN. These findings have a high translational potential, since they were obtained using outcome measures that match clinical practice and TPM is already approved for clinical use being free from detrimental interaction with OHP anticancer properties.


Subject(s)
Antineoplastic Agents/toxicity , Axons/drug effects , Neuroprotective Agents/pharmacology , Neurotoxicity Syndromes/prevention & control , Oxaliplatin/antagonists & inhibitors , Oxaliplatin/toxicity , Peripheral Nervous System Diseases/chemically induced , Peripheral Nervous System Diseases/prevention & control , Topiramate/pharmacology , Animals , Female , Neural Conduction/drug effects , Pain Measurement , Rats , Rats, Wistar
17.
Eur J Pharmacol ; 840: 89-103, 2018 Dec 05.
Article in English | MEDLINE | ID: mdl-30268665

ABSTRACT

Chemotherapy-Induced Peripheral Neurotoxicity (CIPN) is often dose-limiting and impacts life quality and survival of cancer patients. Ghrelin agonists have neuroprotectant effects and may have a role in treating or preventing CIPN. We evaluated the CNS-penetrant ghrelin agonist HM01 in three experimental models of CIPN at doses of 3-30 mg/kg p.o. daily monitoring orexigenic properties, nerve conduction, mechanical allodynia, and intra-epidermal nerve fiber density (IENFD). In a cisplatin-based study, rats were dosed daily for 3 days (0.5 mg/kg i.p.) + HM01. Cisplatin treatment induced mechanical hypersensitivity which was significantly reduced by HM01. In a second study, oxaliplatin was administered to mice (6 mg/kg i.p. 3 times/week for 4 weeks) resulting in significant digital nerve conduction velocity (NCV) deficits and reduction of IENFD. Concurrent HM01 dose dependently prevented the decline in NCV and attenuated the reduction in IENFD. Pharmacokinetic studies showed HM01 accumulation in the dorsal root ganglia and sciatic nerves which reached concentrations > 10 fold that of plasma. In a third model, HM01 was tested in preventive and therapeutic paradigms in a bortezomib-based rat model (0.2 mg/kg i.v., 3 times/week for 8 weeks). In the preventive setting, HM01 blocked bortezomib-induced hyperalgesia and IENFD reduction at all doses tested. In the therapeutic setting, significant effect was observed, but only at the highest dose. Altogether, the robust peripheral nervous system penetration of HM01 and its ability to improve multiple oxaliplatin-, cisplatin-, and bortezomib-induced neurotoxicities suggest that HM01 may be a useful neuroprotective adjuvant for CIPN.


Subject(s)
Antineoplastic Agents/adverse effects , Benzene Derivatives/pharmacology , Ghrelin/agonists , Nervous System/drug effects , Neuroprotective Agents/pharmacology , Animals , Body Weight/drug effects , Cisplatin/adverse effects , Dose-Response Relationship, Drug , Eating/drug effects , Female , Male , Mice , Neural Conduction/drug effects , Piperidines , Rats
18.
J Neuroinflammation ; 15(1): 232, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30131066

ABSTRACT

BACKGROUND: Chemotherapy-induced peripheral neurotoxicity (CIPN) is a severe adverse effect in patients receiving antitumor agents, and no effective treatment is available. Although the mechanisms responsible for the development of CIPN are poorly understood, recent findings make neuroinflammation an attractive target to be investigated, particularly when neuropathic pain is a prominent feature such as after bortezomib administration. The aim of our study was to evaluate the effect of intravenous immunoglobulins (IVIg) delivery in chronic CIPN. The related neuro-immune aspects were investigated in a well-characterized rat model of bortezomib-induced peripheral neurotoxicity (BIPN). METHODS: After determination of a suitable schedule based on a preliminary pharmacokinetic pilot study, female Wistar rats were treated with IVIg 1 g/kg every 2 weeks. IVIg treatment was started at the beginning of bortezomib administration ("preventive" schedule), or once BIPN was already ensued after 4 weeks of treatment ("therapeutic" schedule). Neurophysiological and behavioral studies were performed to assess the extent of painful peripheral neurotoxicity induced by bortezomib, and these functional assessments were completed by pathologic examination of peripheral nerves and intraepidermal nerve fiber quantification (IENF). The role of the innate immune response in BIPN was investigated by immunochemistry characterization of macrophage infiltration in peripheral nerves. RESULTS: Both schedules of IVIg administration were able to significantly reduce bortezomib-induced heat and mechanical allodynia. Although these changes were not evidenced at the neurophysiological examination of peripheral nerves, they behavioral effects were paralleled in the animals treated with the preventive schedule by reduced axonopathy in peripheral nerves and significant protection from loss of IENF. Moreover, IVIg administration was very effective in reducing infiltration in peripheral nerves of macrophages with the M1, pro-inflammatory phenotype. CONCLUSION: Our results suggest a prominent role of neuroinflammation in BIPN and that IVIg might be considered as a possible safe and effective therapeutic option preventing M1 macrophage infiltration. However, since neuropathic pain is frequent also in other CIPN types, it also indicates the need for further investigation in other forms of CIPN.


Subject(s)
Immunoglobulins/therapeutic use , Immunologic Factors/therapeutic use , Macrophages/drug effects , Neurotoxicity Syndromes/drug therapy , Neurotoxicity Syndromes/pathology , Peripheral Nerves/pathology , Animals , Antineoplastic Agents/toxicity , Body Weight/drug effects , Bortezomib/toxicity , Cytokines/metabolism , Disease Models, Animal , Hot Temperature/adverse effects , Hyperalgesia/drug therapy , Hyperalgesia/etiology , Macrophages/pathology , Nerve Fibers/drug effects , Nerve Fibers/pathology , Neural Conduction/drug effects , Neurotoxicity Syndromes/etiology , Neutrophil Infiltration , Physical Stimulation/adverse effects , Rats , Sensory Thresholds/drug effects , Skin/pathology
19.
Exp Neurol ; 307: 129-132, 2018 09.
Article in English | MEDLINE | ID: mdl-29908147

ABSTRACT

The objective of this study is to test the feasibility of using serum neurofilament light chain (NfL) as a disease biomarker in Chemotherapy Induced Peripheral Neuropathy (CIPN) since this easy accessible biological test may have a large impact on clinical management and safety of cancer patients. We performed this preclinical study using a well-characterized rat model based on repeated administration of the cytostatic drug vincristine (VCR, 0.2 mg/kg intravenously via the tail vein once/week for 4 times). Serial NfL serum concentration was measured using the in-house Simoa NfL assay and peripheral neuropathy onset was measured by sensory and motor nerve conduction studies. Serum NfL measure in untreated and VCR-treated rats demonstrated a steady, and significant increase during the course of VCR administration, with a final 4-fold increase with respect to controls (p < .001) when sign of axonopathy and loss of intraepidermal nerve fibers were clearly evident and verified by behavioral, neurophysiological and pathological examination. This simple monitoring approach based on serum NfL concentration measures may be easily translated to clinical practice and should be considered as a putative marker of CIPN severity in a typical oncology outpatient setting. Further studies are needed to validate its utility in cancer patients treated with different neurotoxic drugs.


Subject(s)
Antineoplastic Agents, Phytogenic/toxicity , Disease Models, Animal , Neurofilament Proteins/blood , Peripheral Nervous System Diseases/blood , Peripheral Nervous System Diseases/chemically induced , Vincristine/toxicity , Animals , Biomarkers/blood , Female , Random Allocation , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...