Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
ACS Mater Au ; 3(3): 201-205, 2023 May 10.
Article in English | MEDLINE | ID: mdl-38089132

ABSTRACT

We report the circularly polarized luminescence (CPL) for [Ru(bpy)3]I2 (1) and [Ru(bpy)3][M2(ox)3] (M = Zn (2), Mn (3)). Whereas compound 1 is a simple salt of [Ru(bpy)3]2+, 2 and 3 are MOFs in which the chiral [Ru(bpy)3]2+ ions are encapsulated in a homochiral gyroidal skeleton of [M2(ox)3]2-. Whereas the solution of 1 exhibited weak CPL with a luminescence dissymmetry factor of |glum| ∼ 10-4, the CPL was significantly enhanced in solid-state 1-3 with |glum| = 2 × 10-2 for 1, 4 × 10-2 for 2, and 1 × 10-1 for 3. The enhanced CPL in 3 was attributable to an energy transfer between the homochiral guest and host in 3.

2.
ACS Appl Mater Interfaces ; 12(47): 53029-53038, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33198454

ABSTRACT

This paper presents a new family of ferroelectric smectic liquid-crystalline binary mixtures composed of achiral and chiral trifluoromethylphenylterthiophenes. The chiral symmetry breaking of the ferroelectric smectic phases can lead to chiral photovoltaic (CPV) effects, as a type of ferroelectric photovoltaic (FePV) effect, which is caused by the internal electric field originating from the spontaneous polarization. These ferroelectric properties were examined using the Sawyer-Tower method, and the CPV effect was confirmed by measuring the steady-state photocurrent response under zero bias. We found that the remnant polarization and photocurrent density in the polarized ferroelectric phases increased nonlinearly with the increase in the content of the chiral component in the mixture. Moreover, the hole mobility evaluated by time-of-flight measurements was kept constant by varying the composition. More than 40 mol % of the chiral component was required to form the polar structure, inducing the CPV effect. Binary mixture systems are advantageous for not only optimizing liquid crystal structures and temperature ranges but also facilitating the design of materials exhibiting CPV effects.

3.
Phys Rev E ; 100(3-1): 032701, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31639969

ABSTRACT

We investigate the optical properties of a metal-mirror microcavity containing a liquid-crystalline (LC) perylene tetracarboxylic bisimide (PTCBI) derivative. Measurements of the transmission's incidence angle dependence show that the peaks are split in a complex way and shift as the angle changes. Further, measurements of the photoluminescence spectrum's emission angle dependence show that the peak also shifts with the angle, as in the transmission experiment. We also carry out a theoretical analysis; the theoretical and experimental results are in very good agreement, and we estimate the vacuum Rabi splitting energies to be about 212, 180, and 240 meV. In addition, the peak photoluminescence energy coincides with the lower polariton branch obtained by transmission experiment. Finally, in a time-resolved photoluminescence experiment, we observe a fast relaxation component that is not seen in the bare LC PTCBI film. We believe this is due to cavity effects increasing the spontaneous emission transition rate, indicating that the emissions are due to cavity polaritons.

4.
Chemistry ; 24(65): 17293-17302, 2018 Nov 22.
Article in English | MEDLINE | ID: mdl-30378204

ABSTRACT

A unique superparamagnetic-like behavior and a large "positive magneto-LC effect" were observed in the solid phases and the hexagonal columnar (Colh ) liquid crystalline (LC) phase, respectively, of novel achiral non-π-delocalized nitroxide diradical compounds (R,S)-1, which showed polymorphism in the solid phases (solids I and II). The SQUID magnetization measurement revealed that (1) (R,S)-1 containing a small amount of racemic diastereomers (R*,R*)-1 possessed an unusual and large temperature-independent magnetic susceptibility (χTIM >0) component in the original nanocrystalline solid I that was responsible for the observed superparamagnetic-like behavior under low magnetic fields and did not arise from the contamination by extrinsic magnetic metal or metal ion impurities, besides ordinary temperature-dependent paramagnetic susceptibility (χpara >0) and temperature-independent diamagnetic susceptibility (χdia <0) components, (2) a large increase in molar magnetic susceptibility (χM ) (positive magneto-LC effect) that occurred at the solid I-to-liquid crystal transition upon heating was preserved as an additional χTIM increase in the resulting polymorphic nanocrystalline solid II by cooling, and (3) such unique magnetic phenomena were induced by thermal processing for (R,S)-1 or by adding a small amount of (R*,R*)-1 to (R,S)-1 as the impurity.

5.
Phys Chem Chem Phys ; 19(25): 16446-16455, 2017 Jun 28.
Article in English | MEDLINE | ID: mdl-28608894

ABSTRACT

(S)- and (R)-forms of chiral π-conjugated ferroelectric liquid crystals were synthesized. The dielectric properties in the ferroelectric liquid-crystalline (FLC) phases were evaluated using the Sawyer-Tower method. Spontaneous polarization of (S)-1 reached 68 nC cm-2 at 127 °C. Hole mobilities in the FLC phases estimated using the time-of-flight (TOF) method were on the order of 10-4 cm2 V-1 s-1. Each chiral π-conjugated compound exhibited a photovoltaic effect based on spontaneous polarization without p-n or Schottky junctions. This phenomenon could be attributed to an anomalous photovoltaic (APV) effect that has been observed in ferroelectric ceramics. In addition, liquid-crystalline enantiomeric mixtures of (S)-1 and (R)-1 were prepared and the APV response under UV illumination was studied. The APV response was enhanced with an increase in enantiomeric purity and was minimized in the racemic mixture. From this result, it was concluded that the APV effect in this FLC compound originated from the molecular chirality.

6.
Chemistry ; 20(24): 7232-5, 2014 Jun 10.
Article in English | MEDLINE | ID: mdl-24829192

ABSTRACT

The preparation of two liquid crystals composed of a redox-active tetraazanaphthacene (TANC) framework is reported. The materials form smectic A (SmA) thin-film liquid-crystalline (LC) phases over a wide temperature range. Cyclic voltammetry analysis revealed that LC TANCs behave as organic electron acceptors. The electron mobilities of the thin films were determined by time- of-flight (TOF) measurements, which are the order of 10(-4)  cm(2) V(-1) s(-1) in the SmA LC phase. This value is two orders of magnitude larger than those of amorphous organic semiconductors. To the best of our knowledge, very few reports exist on the electron-transporting behaviors of LC N-heteroacene semiconductors.

7.
Phys Chem Chem Phys ; 16(17): 7754-63, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24643286

ABSTRACT

Electron transport characteristics in nanosegregated columnar phases of perylene tetracarboxylic bisimide (PTCBI) derivatives bearing oligosiloxane chains are studied over wide temperature ranges using a time-of-flight (TOF) method. In the ordered columnar phases of the PTCBI derivatives bearing disiloxane chains, the electron mobilities exceed 0.1 cm(2) V(-1) s(-1) at room temperature. In the disordered columnar phase of the PTCBI derivative bearing trisiloxane chains, the electron mobility reaches the order of 10(-3) cm(2) V(-1) s(-1) at around room temperature. These electron mobilities are temperature-independent at around room temperature. However, their dependence upon the electric field becomes larger when the temperature is lowered below room temperature; this behavior is described by a hopping transport mechanism. The experimental results are analyzed using a one-dimensional disorder model.

8.
Chemphyschem ; 14(12): 2750-8, 2013 Aug 26.
Article in English | MEDLINE | ID: mdl-23873808

ABSTRACT

A liquid-crystalline (LC) phenylterthiophene derivative, which exhibited an ordered smectic phase at room temperature, was purified by vacuum sublimation under a flow of nitrogen. During the sublimation process, thin plates with sizes of 1 mm grew on the surface of the vacuum tube. The crystals exhibited the same X-ray diffraction patterns as the ordered smectic phase of the LC state that was formed through a conventional recrystallization process by using organic solvents. Because of the removal of chemical impurities, the hole mobility in the ordered smectic phase of the vacuum-grown thin plates increased to 1.2×10(-1) cm(2) V(-1) s(-1) at room temperature, whereas that of the LC precipitates was 7×10(-2) cm(2) V(-1) s(-1). The hole mobility in the ordered smectic phase of the vacuum-sublimated sample was temperature-independent between 400 and 220 K. The electric-field dependence of the hole mobility was also very small within this temperature range. The temperature dependence of hole mobility was well-described by the Hoesterey-Letson model. The hole-transport characteristics indicate that band-like conduction affected by the localized states, rather than a charge-carrier-hopping mechanism, is a valid mechanism for hole transport in an ordered smectic phase.


Subject(s)
Liquid Crystals/chemistry , Semiconductors , Quantum Theory , Temperature , Thiophenes/chemistry
9.
Dalton Trans ; 42(45): 15987-94, 2013 Dec 07.
Article in English | MEDLINE | ID: mdl-23880788

ABSTRACT

A liquid-crystalline (LC) perylene tetracarboxylic bisimide (PTCBI) derivative bearing a triethylene oxide chain as well as two pentamethyldisiloxane chains was synthesized. This compound exhibits an ordered lamellar phase at room temperature, and the LC phase is retained when the sample is cooled to -100 °C. Due to the presence of extended π-conjugated perylene rings, efficient electron transport occurs in the lamellar phase and the electron mobility exceeds 1 × 10(-3) cm(2) V(-1) s(-1) at room temperature. Moreover, this PTCBI derivative can form a complex with lithium triflate because of the polar triethylene oxide chain. Lithium triflate can be mixed with it up to 3 mol%. Up to this concentration, the lamellar LC structure and the electron transport properties are not perturbed by the presence of the ionic species.


Subject(s)
Ethylene Oxide/analogs & derivatives , Imides/chemistry , Liquid Crystals/chemistry , Lithium/chemistry , Perylene/analogs & derivatives , Cations , Ethylene Oxide/chemical synthesis , Ethylene Oxide/chemistry , Imides/chemical synthesis , Perylene/chemical synthesis , Perylene/chemistry , Phase Transition
10.
Chemistry ; 16(45): 13465-72, 2010 Dec 03.
Article in English | MEDLINE | ID: mdl-21031362

ABSTRACT

Side-chain liquid-crystalline siloxane polymers bearing terthiophene moieties as mesogenic pendant groups have been synthesized. An alkenylterthiophene derivative was treated with poly(hydrogenmethylsiloxane) and poly(dimethylsiloxane-co-hydrogenmethylsiloxane)s in Me(2)SiO/MeHSiO ratios of 1:1 and 7:3, respectively, in the presence of the Karstedt catalyst, to produce pale yellow polymers. The degrees of introduction of the mesogenic unit were 100, 50, and 30%, respectively. The polymers exhibit ordered smectic phases at room temperature. The copolymers with dimethylsiloxane units form smectic phases as a consequence of nanosegregation between the mesogenic units and siloxane backbones with the alkylene spacers. Time-of-flight measurement reveals that the hole mobility exceeds 1×10(-2) cm(2) V(-1) s(-1) in the ordered smectic phase of the copolymer with a degree introduction of the mesogenic units of 50%. This value is comparable to that of the highly ordered mesophases of low-molecular-weight derivatives of phenylnaphthalene and terthiophene. Because of the segregation behavior induced by the flexible backbone, a closer molecular packing structure favorable for fast carrier transport may be formed in the smectic phase of the copolymer in spite of the low density of the mesogenic groups.

11.
J Am Chem Soc ; 132(22): 7702-8, 2010 Jun 09.
Article in English | MEDLINE | ID: mdl-20465261

ABSTRACT

New molecular materials combining ionic and electronic functions have been prepared by using liquid crystals consisting of terthiophene-based mesogens and terminal imidazolium groups. These liquid crystals show thermotropic smectic A phases. Nanosegregation of the pi-conjugated mesogens and the ionic imidazolium moieties leads to the formation of layered liquid-crystalline (LC) structures consisting of 2D alternating pathways for electronic charges and ionic species. These nanostructured materials act as efficient electrochromic redox systems that exhibit coupled electrochemical reduction and oxidation in the ordered bulk states. For example, compound 1 having the terthienylphenylcyanoethylene mesogen and the imidazolium triflate moiety forms the smectic LC nanostructure. Distinct reversible electrochromic responses are observed for compound 1 without additional electrolyte solution on the application of double-potential steps between 0 and 2.5 V in the smectic A phase at 160 degrees C. In contrast, compound 2 having a tetrafluorophenylterthiophene moiety and compound 3 having a phenylterthiophene moiety exhibit irreversible cathodic reduction and reversible anodic oxidation in the smectic A phases. The use of poly(3,4-ethylenedioxythiophene)-poly(4-styrene sulfonate) (PEDOT-PSS) as an electron-accepting layer on the cathode leads to the distinct electrochromic responses for 2 and 3. These results show that new self-organized molecular redox systems can be built by nanosegregated pi-conjugated liquid crystals containing imidazolium moieties with and without electroactive thin layers on the electrodes.


Subject(s)
Imidazoles/chemistry , Liquid Crystals/chemistry , Nanostructures/chemistry , Thiophenes/chemistry , Electrochemistry , Ions/chemistry , Oxidation-Reduction , Polystyrenes/chemistry
12.
J Am Chem Soc ; 130(40): 13206-7, 2008 Oct 08.
Article in English | MEDLINE | ID: mdl-18783219

ABSTRACT

A new electrochromic molecule comprised of pi-conjugated and ionic moieties has been designed and synthesized. It forms a nanosegregated smectic phase in which ion-conductive layers of imidazolium salts are located between hole transport layers of phenylterthiophene moieties. Electrochromism is observed in the bulk liquid crystal state of this compound without an electrolyte solution. In this nanosegregated smectic phase, an electrical double layer is formed rapidly at the electrode. Consequently holes are injected from the electrode, resulting in oxidation of the pi-conjugated moieties.

13.
J Am Chem Soc ; 130(29): 9236-7, 2008 Jul 23.
Article in English | MEDLINE | ID: mdl-18582045

ABSTRACT

Fullerenes, C60, modified with long alkyl chains form long-range ordered lamellar mesophases permitting a high C60 content. The mesomorphic fullerenes feature reversible electrochemistry and a comparably high electron carrier mobility making them attractive components for fullerene-based soft materials.

14.
Chemphyschem ; 9(10): 1465-73, 2008 Jul 14.
Article in English | MEDLINE | ID: mdl-18574829

ABSTRACT

5-Hexyl-5''-hexynyl-2,2':5',2''-terthiophene exhibits the smectic E phase below 200 degrees C and does not crystallize when it is cooled to -100 degrees C. Between 200 and -100 degrees C, non-dispersive transport is observed for holes and electrons with time-of-flight spectroscopy. Over the entire temperature range, the electron mobility is approximately twice as high as that of the hole. The hole and electron transport characteristics in the smectic phase below 0 degrees C are explained by the Gaussian disorder model, which was proposed for amorphous organic semiconductors. The disorder parameters, sigma and Sigma, are almost the same for holes and electrons. However, the pre-exponential parameter mu(0) for the electron is twice as large as that for the hole, which can be attributed to the difference in the extension of the LUMO of the molecules. The energetic disorder sigma is primarily determined by the disorder in the orientation of the permanent dipoles of liquid crystal molecules.

15.
J Am Chem Soc ; 128(33): 10930-3, 2006 Aug 23.
Article in English | MEDLINE | ID: mdl-16910689

ABSTRACT

Synthesis of oligothiophenes of well-defined structures that possess 2-8 thiophene units is performed with a new synthetic strategy involving C-H homocoupling of bromothiophenes and cross-coupling with organostannanes. Tolerance of the carbon-bromine bond to the palladium-catalyzed C-H homocoupling results in oligothiophenes bearing C-Br bonds at the terminal thiophene rings, which allow further transformation by the catalysis of a transition-metal complex.

16.
J Am Chem Soc ; 128(32): 10384-5, 2006 Aug 16.
Article in English | MEDLINE | ID: mdl-16895401

ABSTRACT

Room temperature liquid C60 derivatives bearing a 2,4,6-trialkyloxyphenyl branch show a dramatic decrease in viscosity with an increase in the length of the alkyl chains. This feature, when combined with electrochemical activities similar to those of pristine C60 and relatively high charge carrier mobility, makes them an extremely attractive novel carbon material for future applications in materials science.

SELECTION OF CITATIONS
SEARCH DETAIL
...