Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Physiol ; 14: 1165939, 2023.
Article in English | MEDLINE | ID: mdl-37565141

ABSTRACT

Purpose: The present study used near-infrared spectroscopy to investigate the relationships between cerebral oxygen metabolism and perfusion in the prefrontal cortex (PFC) during exercises of different intensities. Methods: A total of 12 recreationally active men (age 24 ± 6 years) were enrolled. They performed 17 min of low-intensity exercise (ExL), followed by 3 min of moderate-intensity exercise (ExM) at constant loads. Exercise intensities for ExL and ExM corresponded to 30% and 45% of the participants' heart rate reserve, respectively. Cardiovascular and respiratory parameters were measured. We used near-infrared time-resolved spectroscopy (TRS) to measure the cerebral hemoglobin oxygen saturation (ScO2) and total hemoglobin concentration ([HbT]), which can indicate the cerebral blood volume (CBV). As the cerebral metabolic rate for oxygen (CMRO2) is calculated using cerebral blood flow (CBF) and ScO2, we assumed a constant power law relationship between CBF and CBV based on investigations by positron emission tomography (PET). We estimated the relative changes in CMRO2 (rCMRO2) and CBV (rCBV) from the baseline. During ExL and ExM, the rate of perceived exertion was monitored, and alterations in the subjects' mood induced by exercise were evaluated using the Profile of Moods Scale-Brief. Results: Three minutes after exercise initiation, ScO2 decreased and rCMRO2 surpassed rCBV in the left PFC. When ExL changed to ExM, cardiovascular variables and the sense of effort increased concomitantly with an increase in [HbT] but not in ScO2, and the relationship between rCMRO2 and rCBV was dissociated in both sides of the PFC. Immediately after ExM, [HbT], and ScO2 increased, and the disassociation between rCMRO2 and rCBV was prominent in both sides of the PFC. While blood pressure decreased and a negative mood state was less prominent following ExM compared with that at rest, ScO2 decreased 15 min after exercise and rCMRO2 surpassed rCBV in the left PFC. Conclusion: Dissociated coupling between cerebral oxidative metabolism and perfusion in the PFC was consistent with the effort required for increased exercise intensity and associated with post-exercise hypotension and altered mood status after exercise. Our result demonstrates the first preliminary results dealing with the coupling between cerebral oxidative metabolism and perfusion in the PFC using TRS.

2.
Front Physiol ; 13: 828357, 2022.
Article in English | MEDLINE | ID: mdl-35309081

ABSTRACT

Purpose: This study aimed to investigate changes in cerebral hemodynamics and oxygenation at moderate, heavy, maximal and supramaximal intensities of rowing exercise. It also examined whether these changes reflect alterations in sensation of effort and mood. We also aimed to examine the effects of peak pulmonary oxygen consumption ( V . O2peak ) on cerebral oxygenation. Methods: Eleven rowers, consisting out of six athletes and five recreational rowers [two female; age, 27 ± 9 years; height, 171 ± 7 cm, body mass, 67 ± 9 kg; V . O2peak , 53.5 ± 6.5 mL min-1 kg-1] rowed a 13-min session separated by 10 and 3 min, at 70 (Ex70%) and 80% of V . O2peak (Ex80%), respectively, on a rowing ergometer, followed by three sessions of 1-min supramaximal exercise (ExSp). After a warm-up at 60% of V . O2peak (ExM), seven male rowers performed a 2,000 m all-out test (Ex2000). Cardiovascular and respiratory variables were measured. Cerebral oxygenation was investigated by near-infrared time-resolved spectroscopy (TRS) to measure cerebral hemoglobin oxygen saturation (ScO2) and total hemoglobin concentration ([HbT]) in the prefrontal cortex (PFC) quantitatively. We estimated the relative changes from rest in cerebral metabolic rate for oxygen (rCMRO2) using TRS at all intensities. During Ex70% and Ex80%, ratings of perceived exertion (RPE) were monitored, and alteration of the subject's mood was evaluated using a questionnaire of Positive-and-Negative-Affect-Schedule after Ex70% and Ex80%. Results: When exercise intensity changed from Ex70% to Ex80%, the sense of effort increased while ScO2 decreased. [HbT] remained unchanged. After Ex70% and Ex80%, a negative mood state was less prominent compared to rest and was accompanied by increases in both ScO2 and [HbT]. At termination of Ex2000, ScO2 decreased by 23% compared to rest. Changes in ScO2 correlated with V . O2peak only during Ex2000 (r = -0.86; p = 0.01). rCMRO2 did not decrease at any intensities. Conclusion: Our results suggest that alterations in the sense of effort are associated with oxygenation in the PFC, while positive changes in mood status are associated with cerebral perfusion and oxygen metabolism estimated by TRS. At exhaustion, the cerebral metabolic rate for oxygen is maintained despite a decrease in ScO2.

SELECTION OF CITATIONS
SEARCH DETAIL
...