Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cryobiology ; 59(1): 83-9, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19454281

ABSTRACT

Control of ice formation is crucial in cryopreservation of biological substances. Successful vitrification using several additives that inhibit ice nucleation in vitrification solutions has previously been reported. Among these additives, here we focused on a synthetic polymer, poly(vinyl alcohol) (PVA), and investigated the effects of PVA on nucleation and growth of ice in 35% (w/w) aqueous 1,2-propanediol solution by using a differential scanning calorimetry (DSC) system equipped with a cryomicroscope. First, the freezing temperature of the solution was measured using the DSC system, and then the change in ice fraction in the solution during cooling was evaluated based on images obtained using the cryomicroscope, at different concentrations of PVA between 0% and 3% (w/w). Based on the ice fraction, the change in residual solution concentration during cooling was also evaluated and then plotted on the state diagram of aqueous 1,2-propanediol solution. Results indicated that, when the partially glassy and partially frozen state was intentionally allowed, the addition of PVA effectively inhibited not only ice nucleation but also ice growth in the vitrification solution. The effect of PVA on ice growth in the vitrification solution was explained based on kinetic limitations mainly due to mass transport. The interfacial kinetics also might limit ice growth in the vitrification solution only when the ice growth rate decreased below a critical value. This coincides with the fact that PVA exhibits a unique antifreeze activity in the same manner as antifreeze proteins when ice growth rate is lower than a critical value.


Subject(s)
Cryopreservation/methods , Polyvinyl Alcohol/chemistry , Calorimetry, Differential Scanning/methods , Cryoelectron Microscopy/methods , Cryoprotective Agents/chemistry , Dose-Response Relationship, Drug , Equipment Design , Freezing , Ice , Kinetics , Polymers/chemistry , Propylene Glycol/chemistry , Temperature , Time Factors
2.
Biomacromolecules ; 9(11): 3150-6, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18847239

ABSTRACT

Activity of antifreeze proteins (AFPs) and antifreeze glycoproteins (AFGPs) is often determined by thermal hysteresis, which is the difference between the melting temperature and the nonequilibrium freezing temperature of ice in AF(G)P solutions. In this study, we confirmed that thermal hysteresis of AFP type I is significantly enhanced by a cooperative function of ammonium polyacrylate (NH4PA). Thermal hysteresis of mixtures of AFP type I and NH4PA was much larger than the sum of each thermal hysteresis of AFP type I and NH4PA alone. In mixed solutions of AFP type I and NH4PA in the thermal hysteresis region, hexagonal pyramidal-shaped pits densely formed on ice surfaces close to the basal planes. The experimental results suggest that the cooperative function of NH4PA with AFP type I was caused either by the increase in adsorption sites of AFP type I on ice or by the adsorption of AFP type I aggregates on ice.


Subject(s)
Antifreeze Proteins, Type I/chemistry , Phase Transition , Thermodynamics , Acrylic Resins , Adsorption , Animals , Antifreeze Proteins , Ice , Quaternary Ammonium Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...