Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Genes Environ ; 45(1): 13, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37041652

ABSTRACT

BACKGROUND: DNA oxidatively damaged by reactive oxygen species is repaired by base excision repair (BER) pathway proteins, with DNA glycosylases removing damaged or mismatched bases in the first step of BER. KsgA is a multifunctional protein that exhibits the activities of two enzymes, DNA glycosylase and rRNA dimethyltransferase. The structure-function relationship of the KsgA protein in cellular DNA repair remains unclear because the domains required for KsgA to recognize DNA have not been identified. PURPOSE: To clarify the mechanisms by which KsgA recognizes damaged DNA and to identify the DNA-binding site, which exists in KsgA. METHODS: A structural analysis and in vitro DNA-protein binding assay were performed. The C-terminal function of the KsgA protein was investigated in vitro and in vivo. RESULTS: The 3D conformations of KsgA, MutM, and Nei were compared at UCSF Chimera. The root mean square deviation of KsgA (214-273) and MutM (148-212) and that of KsgA (214-273) and Nei (145-212) were 1.067 and 1.188 Å, both less than 2 Å, suggesting that the C terminal of KsgA is spatially similar to the H2TH domains of MutM and Nei. The full-length KsgA protein and KsgA lacking 1-8 or 214-273 amino acids were purified and used in gel mobility shift assays. KsgA exhibited DNA-binding activity, which was lost in the C-terminally deleted KsgA protein. Spontaneous mutation frequency was measured using a mutM mutY ksgA-deficient strain, and the results obtained showed that the mutation frequency was not suppressed by KsgA lacking the C-terminal region, whereas it was in KsgA. To assess dimethyltransferase activity, kasugamycin sensitivity was assessed in wild-type and ksgA-deficient strains. Plasmids carrying the full-length ksgA gene and C-terminal deletion gene were introduced into ksgA-deficient strains. KsgA lacking the C terminus restored dimethyltransferase activity in the ksgA-deficient strain as well as KsgA. CONCLUSION: The present results confirmed that one enzyme exhibited two activities and revealed that the C-terminal (214-273) amino acids of KsgA were highly similar to the H2TH structural domain, exhibited DNA-binding activity, and inhibited spontaneous mutations. This site is not essential for dimethyltransferase activity.

2.
Genes Genet Syst ; 94(2): 81-93, 2019 Apr 27.
Article in English | MEDLINE | ID: mdl-30930342

ABSTRACT

Apurinic/apyrimidinic (AP) sites are the most common form of cytotoxic DNA damage. Since AP sites inhibit DNA replication and transcription, repairing them is critical for cell growth. However, the significance of repairing AP sites during early embryonic development has not yet been clearly determined. Here, we focused on APEX1 from the ascidian Ciona intestinalis (CiApex1), a homolog of human AP endonuclease 1 (APEX1), and examined its role in early embryonic development. Recombinant CiApex1 protein complemented the drug sensitivities of an AP endonuclease-deficient Escherichia coli mutant, and exhibited Mg2+-dependent AP endonuclease activity, like human APEX1, in vitro. Next, the effects of abnormal AP site repair on embryonic development were investigated. Treatment with methyl methanesulfonate, which alkylates DNA bases and generates AP sites, induced abnormal embryonic development. This abnormal phenotype was also caused by treatment with methoxyamine, which inhibits AP endonuclease activity. Furthermore, we constructed dominant-negative CiApex1, which inhibits CiApex1 action, and found that its expression impaired embryonic growth. These results suggested that AP site repair is essential for embryonic development and CiApex1 plays an important role in AP site repair during early embryonic development in C. intestinalis.


Subject(s)
Ciona intestinalis/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Embryonic Development/genetics , Animals , Ciona intestinalis/embryology , Ciona intestinalis/enzymology , DNA Repair , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Mutation
3.
Sci Rep ; 8(1): 16736, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425296

ABSTRACT

AP endonuclease deficiency causes cell death and embryonic lethality in mammals. However, the physiological roles of AP endonucleases in multicellular organisms remain unclear, especially after embryogenesis. Here, we report novel physiological roles of the AP endonuclease EXO-3 from larval to adult stages in Caenorhabditis elegans, and elucidated the mechanism of the observed phenotypes due to EXO-3 deficiency. The exo-3 mutants exhibited developmental delay, whereas the apn-1 mutants did not. The delay depended on the DNA glycosylase NTH-1 and checkpoint kinase CHK-2. The exo-3 mutants had further developmental delay when treated with AP site-generating agents such as methyl methane sulfonate and sodium bisulfite. The further delay due to sodium bisulfite was dependent on the DNA glycosylase UNG-1. The exo-3 mutants also demonstrated an increase in dut-1 (RNAi)-induced abnormal vulval organogenesis protruding vulva (Pvl), whereas the apn-1 mutants did not. The increase in Pvl was dependent on UNG-1 and CHK-2. Methyl viologen, ndx-1 (RNAi) and ndx-2 (RNAi) enhanced the incidence of Pvl among exo-3 mutants only when combined with dut-1 (RNAi). This further increase in Pvl incidence was independent of NTH-1. These results indicate that EXO-3 prevents developmental delay and Pvl in C. elegans, which are induced via DNA glycosylase-initiated checkpoint activation.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/growth & development , DNA Glycosylases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/deficiency , Mutation , Organogenesis/genetics , Vulva/abnormalities , Animals , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Checkpoint Kinase 2/metabolism , DNA Damage , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Female , Gene Expression Regulation, Developmental , Phenotype , Vulva/growth & development
4.
Genes Environ ; 39: 27, 2017.
Article in English | MEDLINE | ID: mdl-29213341

ABSTRACT

Apurinic/apyrimidinic (AP) sites are one of the most frequent DNA lesions. AP sites inhibit transcription and DNA replication, and induce cell death. AP endonucleases are key enzymes in AP site repair. Several types of AP endonucleases have been reported, such as AP endonuclease 2 (APEX2) and ribosomal protein P0 (P0). However, it is not known how the functions and roles differ among AP endonucleases. To clarify the difference of roles among AP endonucleases, we conducted biochemical analysis focused on APEX2 and P0 homologues in Ciona intestinalis. Amino acid sequence analysis suggested that CiAPEX2 and CiP0 are AP endonuclease homologues. Although we could not detect AP endonuclease or 3'-phosphodiesterase activity, these two purified proteins exhibited 3'-5' exonuclease activity. This 3'-5' exonuclease activity was sensitive to ethylenediaminetetraacetic acid (EDTA), and the efficiency of this activity was influenced by the 3'-terminus of substrate DNA. Both CiAPEX2 and CiP0 degraded not only a 5'-protruding DNA end, but also nicked DNA, which is generated through AP endonuclease 1 (APEX1) cleavage. These two genes partially complemented the growth rate of AP endonuclease-deficient Escherichia coli treated with hydrogen peroxide. These results indicate that 3'-5' exonuclease activity is an evolutionarily conserved enzymatic activity of APEX2 and P0 homologues and this enzymatic activity may be important for AP endonucleases.

5.
Mutat Res ; 772: 46-54, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25772110

ABSTRACT

Apurinic/apyrimidinic (AP) sites are the major DNA damage generated continuously even under normal conditions, and inhibit DNA replication/transcription. AP endonucleases are ubiquitous enzymes required for the repair of AP sites and 3' blocking ends, but their physiological roles in multicellular organisms are not fully understood. In this study, we investigated how an AP endonuclease functions in a multicellular organism (Caenorhabditis elegans (C. elegans)). EXO-3 is one of the AP endonucleases in C. elegans. Using an exo-3 mutant worm, we found that deletion of the exo-3 gene caused shortened lifespan in an ung-1-dependent manner. UNG-1 is a uracil DNA glycosylase in C. elegans, and the present finding suggested that UNG-1 is the major producer of AP sites that affects lifespan, and EXO-3 contributes to longevity by completing the repair of uracil. Next we found that the exo-3 gene was abundantly expressed in the gonads, and AP sites in the gonad were efficiently repaired, suggesting that EXO-3 functioned particularly in the gonad. Deletion of the exo-3 gene resulted in a significant decrease in self-brood size. This was rescued by deficiency of NTH-1, which is a bifunctional DNA glycosylase in C. elegans that recognizes oxidative base damage. This result suggested that the major substrate of EXO-3 in the gonad was 3' blocking end generated by NTH-1, and that EXO-3 played an important role in reproduction. A contribution of EXO-3 to reproduction was also suggested by our finding here that the decrease of self-brood size of the exo-3 mutant became more marked when worms were treated with methyl methanesulfonate (MMS) and sodium bisulfite (NaHSO3). This study demonstrated differential roles of EXO-3 in somatic cells and germ cells.


Subject(s)
Caenorhabditis elegans Proteins/metabolism , Caenorhabditis elegans/enzymology , DNA-(Apurinic or Apyrimidinic Site) Lyase/metabolism , Germ Cells/enzymology , Gonads/enzymology , Longevity/physiology , Animals , Caenorhabditis elegans/cytology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , DNA Glycosylases/genetics , DNA Glycosylases/metabolism , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Endonucleases/genetics , Endonucleases/metabolism , Gene Deletion , Germ Cells/cytology , Gonads/cytology , Longevity/drug effects , Methyl Methanesulfonate/pharmacology , Mutagens/pharmacology , Reproduction/drug effects , Reproduction/genetics , Uracil-DNA Glycosidase/genetics , Uracil-DNA Glycosidase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...