Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(9): 107552, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37646020

ABSTRACT

Developing CD4+CD8+ double-positive (DP) thymocytes with randomly generated T cell receptors (TCRs) undergo positive (maturation) or negative (apoptosis) selection on the basis of the strength of TCR stimulation. Selection fate is determined by engagement of TCR ligands with a subtle difference in affinity, but the molecular details of TCR signaling leading to the different selection outcomes have remained unclear. We performed phosphoproteome analysis of DP thymocytes and found that p90 ribosomal protein kinase (RSK) phosphorylation at Thr562 was induced specifically by high-affinity peptide ligands. Such phosphorylation of RSK triggered its translocation to the nucleus, where it phosphorylated the nuclear receptor Nur77 and thereby promoted its mitochondrial translocation for apoptosis induction. Inhibition of RSK activity protected DP thymocytes from antigen-induced cell death. We propose that RSK phosphorylation constitutes a mechanism by which DP thymocytes generate a stepwise and binary signal in response to exposure to TCR ligands with a graded affinity.

2.
Cancer Sci ; 113(7): 2352-2367, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35396773

ABSTRACT

Renal cell carcinoma with Xp11.2 translocation involving the TFE3 gene (TFE3-RCC) is a recently identified subset of RCC with unique morphology and clinical presentation. The chimeric PRCC-TFE3 protein produced by Xp11.2 translocation has been shown to transcriptionally activate its downstream target genes that play important roles in carcinogenesis and tumor development of TFE3-RCC. However, the underlying molecular mechanisms remain poorly understood. Here we show that in TFE3-RCC cells, PRCC-TFE3 controls heme oxygenase 1 (HMOX1) expression to confer chemoresistance. Inhibition of HMOX1 sensitized the PRCC-TFE3 expressing cells to genotoxic reagents. We screened for a novel chlorambucil-polyamide conjugate (Chb) to target PRCC-TFE3-dependent transcription, and identified Chb16 as a PRCC-TFE3-dependent transcriptional inhibitor of HMOX1 expression. Treatment of the patient-derived cancer cells with Chb16 exhibited senescence and growth arrest, and increased sensitivity of the TFE3-RCC cells to the genotoxic reagent etoposide. Thus, our data showed that the TFE3-RCC cells acquired chemoresistance through HMOX1 expression and that inhibition of HMOX1 by Chb16 may be an effective therapeutic strategy for TFE3-RCC.


Subject(s)
Carcinoma, Renal Cell , Kidney Neoplasms , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Carcinoma, Renal Cell/drug therapy , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Chlorambucil/pharmacology , Chromosomes, Human, X , Drug Resistance, Neoplasm/genetics , Humans , Kidney Neoplasms/drug therapy , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Nylons , Translocation, Genetic
3.
Nat Commun ; 11(1): 6314, 2020 12 09.
Article in English | MEDLINE | ID: mdl-33298956

ABSTRACT

Blood and lymphatic vessels structurally bear a strong resemblance but never share a lumen, thus maintaining their distinct functions. Although lymphatic vessels initially arise from embryonic veins, the molecular mechanism that maintains separation of these two systems has not been elucidated. Here, we show that genetic deficiency of Folliculin, a tumor suppressor, leads to misconnection of blood and lymphatic vessels in mice and humans. Absence of Folliculin results in the appearance of lymphatic-biased venous endothelial cells caused by ectopic expression of Prox1, a master transcription factor for lymphatic specification. Mechanistically, this phenotype is ascribed to nuclear translocation of the basic helix-loop-helix transcription factor Transcription Factor E3 (TFE3), binding to a regulatory element of Prox1, thereby enhancing its venous expression. Overall, these data demonstrate that Folliculin acts as a gatekeeper that maintains separation of blood and lymphatic vessels by limiting the plasticity of committed endothelial cells.


Subject(s)
Cell Plasticity , Lymphatic Vessels/embryology , Proto-Oncogene Proteins/deficiency , Tumor Suppressor Proteins/deficiency , Veins/embryology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , Cell Nucleus/metabolism , Embryo, Mammalian , Endothelial Cells/metabolism , Endothelium, Lymphatic/cytology , Endothelium, Lymphatic/embryology , Endothelium, Vascular/cytology , Endothelium, Vascular/embryology , Female , Gene Expression Regulation, Developmental , Homeodomain Proteins/metabolism , Human Umbilical Vein Endothelial Cells , Humans , Lymphatic Vessels/cytology , Male , Mice , Mice, Knockout , Mice, Transgenic , Proto-Oncogene Proteins/genetics , RNA Interference , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism , Veins/cytology
4.
Mol Cancer Res ; 17(8): 1613-1626, 2019 08.
Article in English | MEDLINE | ID: mdl-31043488

ABSTRACT

Renal cell carcinoma (RCC) associated with Xp11.2 translocation (TFE3-RCC) has been recently defined as a distinct subset of RCC classified by characteristic morphology and clinical presentation. The Xp11 translocations involve the TFE3 transcription factor and produce chimeric TFE3 proteins retaining the basic helix-loop-helix leucine zipper structure for dimerization and DNA binding suggesting that chimeric TFE3 proteins function as oncogenic transcription factors. Diagnostic biomarkers and effective forms of therapy for advanced cases of TFE3-RCC are as yet unavailable. To facilitate the development of molecular based diagnostic tools and targeted therapies for this aggressive kidney cancer, we generated a translocation RCC mouse model, in which the PRCC-TFE3 transgene is expressed specifically in kidneys leading to the development of RCC with characteristic histology. Expression of the receptor tyrosine kinase Ret was elevated in the kidneys of the TFE3-RCC mice, and treatment with RET inhibitor, vandetanib, significantly suppressed RCC growth. Moreover, we found that Gpnmb (Glycoprotein nonmetastatic B) expression was notably elevated in the TFE3-RCC mouse kidneys as seen in human TFE3-RCC tumors, and confirmed that GPNMB is the direct transcriptional target of TFE3 fusions. While GPNMB IHC staining was positive in 9/9 cases of TFE3-RCC, Cathepsin K, a conventional marker for TFE3-RCC, was positive in only 67% of cases. These data support RET as a potential target and GPNMB as a diagnostic marker for TFE3-RCC. The TFE3-RCC mouse provides a preclinical in vivo model for the development of new biomarkers and targeted therapeutics for patients affected with this aggressive form of RCC. IMPLICATIONS: Key findings from studies with this preclinical mouse model of TFE3-RCC underscore the potential for RET as a therapeutic target for treatment of patients with TFE3-RCC, and suggest that GPNMB may serve as diagnostic biomarker for TFE3 fusion RCC.


Subject(s)
Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Carcinoma, Renal Cell/pathology , Chromosomes, Human, X , Kidney Neoplasms/pathology , Membrane Glycoproteins/metabolism , Oncogene Proteins, Fusion , Translocation, Genetic , Adolescent , Adult , Aged , Animals , Apoptosis , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/metabolism , Cell Cycle Proteins/genetics , Cell Proliferation , Child , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Humans , Kidney Neoplasms/genetics , Kidney Neoplasms/metabolism , Male , Membrane Glycoproteins/genetics , Mice , Mice, Inbred C57BL , Middle Aged , Neoplasm Proteins/genetics , Prognosis , Survival Rate , Tumor Cells, Cultured , Young Adult
5.
FEBS Lett ; 587(22): 3656-60, 2013 Nov 15.
Article in English | MEDLINE | ID: mdl-24076029

ABSTRACT

Conophylline (CNP) has various biological activities, such as insulin production. A recent study identified ADP-ribosylation factor-like 6-interacting protein 1 (ARL6ip1) as a direct target protein of CNP. In this study, we revealed that ARL6ip1 is a three-spanning transmembrane protein and determined the CNP-binding domain of ARL6ip1 by deletion mutation analysis of ARL6ip1 with biotinyl-amino-CNP. These results suggest that CNP is expected to be useful for future investigation of ARL6ip1 function in cells. Because of the anti-apoptotic function of ARL6ip1, CNP may be an effective therapeutic drug and/or a novel chemosensitizer for human cancers and other diseases.


Subject(s)
Adaptor Proteins, Signal Transducing/chemistry , Membrane Proteins/chemistry , Plant Extracts/chemistry , Vinca Alkaloids/chemistry , Amino Acid Sequence , Binding Sites , HEK293 Cells , Humans , Models, Molecular , Molecular Sequence Data , Protein Binding , Protein Structure, Tertiary
SELECTION OF CITATIONS
SEARCH DETAIL
...