Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Antonie Van Leeuwenhoek ; 117(1): 27, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38261019

ABSTRACT

Microorganisms, including native yeasts, are abundant in vineyard fields. Herein, we studied the possibility of using vineyard-derived wild yeast as a microbial pesticide against Botrytis cinerea, a pathogen that causes grape gray mold disease, to boost the initial alcohol production of spontaneously fermented wine. We identified the Saccharomyces cerevisiae strain KONDO170908, which showed the most effective antifungal activity in an ex vivo yeast dripping experiment on grape berries. This strain was utilized in an in vivo spray test on grape bunches in vineyard fields and was proven to significantly suppress gray mold disease on the grape berries in test plot #16 when the yeast was sprayed during both the flowering and ripening periods (morbidity 11.2% against 15.3% of the control plot, χ2 test, p < 0.0001). However, in test plot #17, spraying the yeast during only the ripening period had no effect (morbidity 16.3%). The grapes from each test plot were also submitted for spontaneous wine fermentation. Alcoholic fermentation of the grapes from test plot #16 provided the most active bubbling of CO2 gas and the highest ethanol production and colony counts over seven days of fermentation. Unique changes in the different strains of S. cerevisiae among the plots were observed throughout the early fermentation stage. Thus, yeast spraying during the flowering period might trigger modification of the entire microbiota and could ultimately contribute to promoting alcohol production in the spontaneously fermented wine, although it decreased the grape yield by 20%.


Subject(s)
Vitis , Wine , Saccharomyces cerevisiae , Antifungal Agents/pharmacology , Farms , Ethanol
2.
Chem Biodivers ; 20(4): e202200924, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36929088

ABSTRACT

The hepatitis E virus (HEV) causes a common infectious disease that infects pigs, wild boars, deer, and humans. In most cases, humans are infected by eating raw meat. Some essential oils have been reported to exhibit antiviral activities. In this study, in order to investigate the anti-HEV properties of essential oils, the immunoreactivities of HEV antigen proteins against the relevant antibodies were analyzed after the HEV antigens underwent treatment with various essential oils. The essential oils extracted from the tea tree, which was previously reported to exhibit antiviral activity, lavender, and lemon had strongly reduced activity. We found that treatment with the essential oil prepared from Sakhalin spruce was associated with the strongest reduction in immunoreactivity of HEV antigen protein(s) among the tested substances. The main volatile constituents of Sakhalin spruce essential oil were found to be bornyl acetate (32.30 %), α-pinene (16.66 %), camphene (11.14 %), camphor (5.52 %), ß-phellandrene (9.09 %), borneol (4.77 %), and limonene (4.57 %). The anti-HEV properties of the various components of the essential oils were examined: treatment with bornyl acetate, the main component of Sakhalin spruce oil, α-pinene, the main component of tea tree oil, and limonene, the main component of lemon oil, resulted in a strong reduction in HEV antigen immunoreactivity. These results indicate that each main component of the essential oils plays an important role in the reduction of the immunoreactivity of HEV antigen protein(s); they also suggest that Sakhalin spruce essential oil exhibits anti-HEV activity. In a formulation with the potential to eliminate the infectivity of HEV in foodborne infections, this essential oil can be applied as an inactivating agent for meat processing and cooking utensils, such as knives and chopping boards.


Subject(s)
Deer , Hepatitis E virus , Oils, Volatile , Picea , Animals , Swine , Humans , Oils, Volatile/pharmacology , Limonene , Antiviral Agents
3.
J Gen Appl Microbiol ; 58(4): 273-81, 2012.
Article in English | MEDLINE | ID: mdl-22990487

ABSTRACT

In fish sauce production, microorganisms are associated with the fermentation process; however, the sequential changes in the bacterial communities have never been examined throughout the period of fermentation. In this study, we determined the bacterial floras in a fish sauce mash over 8 months, using three different culture media and 16S rRNA gene clone library analysis. During the first 4 weeks, viable counts of non-halophilic and halophilic bacteria decreased and were dominated by Staphylococcus species. Between 4 and 6 weeks, halophilic and highly halophilic bacterial counts markedly increased from 10(7) to 10(8) cfu/g, and the predominant species changed to Tetragenococcus halophilus. The occurrence of T. halophilus was associated with an increase of lactic acid and a reduction of pH values. In contrast, non-halophilic bacterial counts decreased to 10(6) cfu/g by 6 weeks with Bacillus subtilis as the dominant isolate. Clone library analysis revealed that the dominant bacterial group also changed from Staphylococcus spp. to T. halophilus, and the changes were consistent with those of the floras of halophilic and highly halophilic isolates. This is the first report describing a combination approach of culture and clone library methods for the analysis of bacterial communities in fish sauce mash.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Biota , Fishes/microbiology , Food Microbiology , Animals , Bacteria/genetics , Bacteria/growth & development , Bacterial Load , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Fermentation , Hydrogen-Ion Concentration , Lactic Acid/analysis , Microbial Viability , Molecular Sequence Data , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...