Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vaccine ; 41(2): 476-485, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36481109

ABSTRACT

BACKGROUND: Although there has developed an increased interest in the vaccines BNT1622b2 (Pfizer/BioNTech), mRNA-1273 (Moderna/NIAID), and ChAdOx1 nCoV-19 (AstraZeneca/University of Oxford), there are still few reports describing the immune response induced by different vaccine platforms in real-world settings of low-income countries. Here, we proposed to analyse the humoral immune response elicited by the primary vaccines used in Argentina from July-December 2021. METHODS: Anti-SARS-CoV-2-Spike-RBD IgG and neutralising antibodies were assayed by ELISA in a total of 871 serum samples obtained from 376 volunteers from an educational staff. The individuals were vaccinated with BBIBP-CorV (Sinopharm), ChAdOx1 nCoV-19 (AstraZeneca/University of Oxford, AZ), Gam-COVID-Vac (Sputnik V, SpV) or combined vaccines (mostly SpV and mRNA-1273, Moderna). The antibody response was analysed several days after the initial vaccination (20, 40, 120 and 180 days). RESULTS: After receiving at least one dose of the COVID-19 vaccine, we detected 93.34% of seroprevalence. Previously SARS-CoV-2 infected showed higher antibody concentrations compared with naïve vaccinees. Six months after the initial vaccination, combined vaccination induced higher anti-SARS-CoV-2 antibody levels than the other vaccines in naïve volunteers. However, we did not find differences in the neutralising responses after any vaccine from naïve vaccines or between the naïve and previously infected volunteers on day 120 after vaccination. CONCLUSIONS: Our long-term analysis of volunteers from the educational system provides data in a real-world context, showing the benefits of a boost dose still in previously infected volunteers, and suggesting the advantages of a heterologous prime-boost schedule.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , ChAdOx1 nCoV-19 , Antibody Formation , 2019-nCoV Vaccine mRNA-1273 , Argentina , Seroepidemiologic Studies , COVID-19/prevention & control , SARS-CoV-2 , Vaccination , Antibodies, Viral , Immunoglobulin G
2.
Tissue Cell ; 46(5): 356-62, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25035101

ABSTRACT

In birds and mammals the metabolic response to fasting has been studied and can be characterized by three consecutive phases reflecting metabolic and physiological adjustments. An effective way to minimize energy expenditure during food scarcity is to decrease the mass of the organs. As the digestive system is metabolically expensive to maintain, the small intestine and the liver are the most affected organs. We evaluated the effects of phase III starvation on the mass of the different organs and histological parameters on house sparrows, a small non-migrant bird. In a short period of time (34 h) we observed a larger reduction in the digestive organ mass when compared to the mass of the body and non-alimentary tissues. Furthermore, the intestinal mass was proportionally more reduced than its length and nominal surface area. A reduction on the intestinal mucosal layer also resulted in a shortening of villus (length and thickness) and crypt depth. Moreover, the morphology of the enterocytes changed from cylindrical to cubical, suggesting that the surface exposed to the lumen was conserved. This may indicate an adaptive response to the moment of refeeding. The nominal surface area/body mass remained constant in both groups and several histological parameters were reduced, suggesting that starving induces the atrophy of the small intestine. However, the goblet cells were conserved after fasting indicating a protective tendency.


Subject(s)
Fasting/physiology , Intestine, Small/pathology , Sparrows/physiology , Animals , Organ Size
3.
Article in English | MEDLINE | ID: mdl-22613787

ABSTRACT

Starvation is a condition that often affects animals in nature. The gastrointestinal tract is the organ system displaying the most rapid and dramatic changes in response to nutrient deprivation. To date, little is known about starvation phases and effects on the organ morphology and digestive function in small passerine birds. In this study, we determined the phases of starvation and examined the effect of final stage of starvation in the organ morphology and, intestinal histology and enzymatic function in the small intestine. Our results show the three phases of the classical model of fasting in a shorter period of time. The mass of heart, pancreas, stomach, small intestine and liver of long-term fasted birds was reduced between 20 and 47%. The mass decrease in small intestine was correlated with reduction in small intestinal histology: perimeter, mucosal thickness, villus height and width. In contrast, the enzyme activity of sucrase-isomaltase and aminopeptidase-N in enterocytes, all expressed per µg of protein, was higher in long-term fasted birds than fed animals. This suggest that, while autophagy of digestive organs is induced by starvation, consistent with phenotypic plasticity, the activity of sucrase-isomaltase and aminopeptidase-N remains high, probably as an anticipatory strategy to optimize digestion at re-feeding time.


Subject(s)
Fasting , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/metabolism , Sparrows/anatomy & histology , Sparrows/metabolism , Animals
SELECTION OF CITATIONS
SEARCH DETAIL
...