Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomaterials (Basel) ; 12(23)2022 Nov 30.
Article in English | MEDLINE | ID: mdl-36500883

ABSTRACT

Pequi oil (Caryocar brasiliense) contains bioactive compounds capable of modulating the inflammatory process; however, its hydrophobic characteristic limits its therapeutic use. The encapsulation of pequi oil in nanoemulsions can improve its biodistribution and promote its immunomodulatory effects. Thus, the objective of the present study was to formulate pequi oil-based nanoemulsions (PeNE) to evaluate their biocompatibility, anti-inflammatory, and antinociceptive effects in in vitro (macrophages­J774.16) and in vivo (Rattus novergicus) models. PeNE were biocompatible, showed no cytotoxic and genotoxic effects and no changes in body weight, biochemistry, or histology of treated animals at all concentrations tested (90−360 µg/mL for 24 h, in vitro; 100−400 mg/kg p.o. 15 days, in vivo). It was possible to observe antinociceptive effects in a dose-dependent manner in the animals treated with PeNE, with a reduction of 27 and 40% in the doses of 100 and 400 mg/kg of PeNE, respectively (p < 0.05); however, the treatment with PeNE did not induce edema reduction in animals with carrageenan-induced edema. Thus, the promising results of this study point to the use of free and nanostructured pequi oil as a possible future approach to a preventive/therapeutic complementary treatment alongside existing conventional therapies for analgesia.

2.
Pharmacol Biochem Behav ; 134: 49-56, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25902407

ABSTRACT

The pathophysiology of chronic inflammatory pain remains poorly understood. In this context, we developed an experimental model in which successive daily injection of prostaglandin E2 (PGE2) for 14days into rat hind paws produces a persistent state of hypernociception (i.e. decrease in mechanical nociceptive threshold). This state persists for more than 30days after discontinuing PGE2 injection. In the present study, we investigated the participation of nuclear factor kappa B (NF-κB), in the maintenance of this process. Mechanical hypernociception was evaluated using the electronic von Frey test. Activation of NF-κB signaling was measured through the determination of NF-κB p65 subunit translocation to the nucleus of dorsal root ganglion neurons (DRG) by immunofluorescence and western blotting. Herein, we detected an increase in NF-κB p65 subunit translocation to the nucleus of DRG neurons along with persistent inflammatory hypernociception compared with controls. Intrathecal treatment with either dexamethasone or PDTC (NF-κB activation inhibitor) after ending of the induction phase of the persistent inflammatory hypernociception, curtailed the hypernociception period as well as reducing NF-κB p65 subunit translocation. Treatment with antisense oligonucleotides against the NF-κB p65 subunit for 5 consecutive days also reduced persistent inflammatory hypernociception. Inhibition of PKA and PKCε reduced persistent inflammatory hypernociception, which was associated with inhibition of NF-κB p65 subunit translocation. Together these results suggest that peripheral activation of NF-κB by PKA and PKC in primary sensory neurons plays an important role in maintaining persistent inflammatory pain.


Subject(s)
Inflammation/metabolism , NF-kappa B/metabolism , Nociceptive Pain/metabolism , Animals , Cyclic AMP-Dependent Protein Kinases/metabolism , Inflammation/complications , Inflammation/enzymology , Male , Nociceptive Pain/enzymology , Nociceptive Pain/etiology , Protein Kinase C-epsilon/metabolism , Rats , Rats, Wistar
3.
Mol Pain ; 8: 10, 2012 Feb 08.
Article in English | MEDLINE | ID: mdl-22316281

ABSTRACT

BACKGROUND: In addition to their central effects, opioids cause peripheral analgesia. There is evidence showing that peripheral activation of kappa opioid receptors (KORs) inhibits inflammatory pain. Moreover, peripheral µ-opioid receptor (MOR) activation are able to direct block PGE(2)-induced ongoing hyperalgesia However, this effect was not tested for KOR selective activation. In the present study, the effect of the peripheral activation of KORs on PGE(2)-induced ongoing hyperalgesia was investigated. The mechanisms involved were also evaluated. RESULTS: Local (paw) administration of U50488 (a selective KOR agonist) directly blocked, PGE(2)-induced mechanical hyperalgesia in both rats and mice. This effect was reversed by treating animals with L-NMMA or N-propyl-L-arginine (a selective inhibitor of neuronal nitric oxide synthase, nNOS), suggesting involvement of the nNOS/NO pathway. U50488 peripheral effect was also dependent on stimulation of PI3Kγ/AKT because inhibitors of these kinases also reduced peripheral antinociception induced by U50488. Furthermore, U50488 lost its peripheral analgesic effect in PI3Kγ null mice. Observations made in vivo were confirmed after incubation of dorsal root ganglion cultured neurons with U50488 produced an increase in the activation of AKT as evaluated by western blot analyses of its phosphorylated form. Finally, immunofluorescence of DRG neurons revealed that KOR-expressing neurons also express PI3Kγ (≅ 43%). CONCLUSIONS: The present study indicates that activation of peripheral KORs directly blocks inflammatory hyperalgesia through stimulation of the nNOS/NO signaling pathway which is probably stimulated by PI3Kγ/AKT signaling. This study extends a previously study of our group suggesting that PI3Kγ/AKT/nNOS/NO is an important analgesic pathway in primary nociceptive neurons.


Subject(s)
Class Ib Phosphatidylinositol 3-Kinase/metabolism , Hyperalgesia/pathology , Inflammation/pathology , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Receptors, Opioid, kappa/metabolism , 3,4-Dichloro-N-methyl-N-(2-(1-pyrrolidinyl)-cyclohexyl)-benzeneacetamide, (trans)-Isomer/pharmacology , Animals , Dinoprostone/pharmacology , Enzyme Activation/drug effects , Hyperalgesia/complications , Hyperalgesia/enzymology , Inflammation/complications , Inflammation/enzymology , Male , Mice , Mice, Inbred C57BL , Nociception/drug effects , Peripheral Nervous System/drug effects , Peripheral Nervous System/enzymology , Peripheral Nervous System/pathology , Rats , Receptors, Opioid, kappa/agonists , Signal Transduction/drug effects
4.
Proc Natl Acad Sci U S A ; 107(9): 4442-7, 2010 Mar 02.
Article in English | MEDLINE | ID: mdl-20147620

ABSTRACT

Morphine is one of the most prescribed and effective drugs used for the treatment of acute and chronic pain conditions. In addition to its central effects, morphine can also produce peripheral analgesia. However, the mechanisms underlying this peripheral action of morphine have not yet been fully elucidated. Here, we show that the peripheral antinociceptive effect of morphine is lost in neuronal nitric-oxide synthase null mice and that morphine induces the production of nitric oxide in primary nociceptive neurons. The activation of the nitric-oxide pathway by morphine was dependent on an initial stimulation of PI3Kgamma/AKT protein kinase B (AKT) and culminated in increased activation of K(ATP) channels. In the latter, this intracellular signaling pathway might cause a hyperpolarization of nociceptive neurons, and it is fundamental for the direct blockade of inflammatory pain by morphine. This understanding offers new targets for analgesic drug development.


Subject(s)
KATP Channels/metabolism , Morphine/therapeutic use , Nitric Oxide Synthase Type I/metabolism , Nitric Oxide/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Analgesics, Opioid/administration & dosage , Analgesics, Opioid/therapeutic use , Animals , Male , Mice , Mice, Inbred C57BL , Morphine/administration & dosage , Pain/drug therapy , Pain/enzymology , Pain/metabolism , Rats , Rats, Wistar
5.
Life Sci ; 85(23-26): 822-9, 2009 Dec 16.
Article in English | MEDLINE | ID: mdl-19896488

ABSTRACT

AIMS: Many fundamental pharmacological studies in pain and inflammation have been performed on rats. However, the pharmacological findings were generally not extended to other species in order to increase their predictive therapeutic value. We studied acute and chronic inflammatory nociceptive sensitisation of mouse hind paws by prostaglandin E(2) (PGE(2)) or dopamine (DA), as previously described in rats. We also investigated the participation of the signalling pathways in acute and persistent sensitisation. MAIN METHODS: Mechanical sensitisation (hypernociception) induced by intraplantar administrations of PGE(2) or DA was evaluated with an electronic pressure meter. The signalling pathways were pharmacologically investigated with the pre-administration of adenylyl cyclase (AC), cAMP-dependent protein kinase (PKA), protein kinase Cepsilon (PKCepsilon), and the extracellular signal-related kinase (ERK) inhibitors. KEY FINDINGS: Single or 14days of successive intraplantar injections of PGE(2) or DA-induced acute and persistent hypernociception (lasting for more than 30days), respectively. The involvement of AC, PKA or PKCepsilon was observed in the acute hypernociception induced by PGE(2), while PKA or PKCepsilon were continuously activated during the period of persistent hypernociception. The acute hypernociception induced by DA involves activation of ERK, PKCepsilon, AC or PKA, while persistent hypernociception implicated ERK activation, but not PKA, PKCepsilon or AC. SIGNIFICANCE: In mice, acute and persistent paw sensitisation involves the different activation of kinases, as previously described for rats. This study opens the possibility of comparing pharmacological approaches in both species to further understand acute and chronic inflammatory sensitisation, and possibly associated genetic manipulations.


Subject(s)
Dinoprostone/pharmacology , Dopamine/pharmacology , Hindlimb/drug effects , Oxytocics/pharmacology , Signal Transduction , Sympathomimetics/pharmacology , Animals , Hindlimb/immunology , Inflammation , Male , Mice , Pain Measurement , Phosphotransferases/metabolism
6.
Proc Natl Acad Sci U S A ; 105(49): 19038-43, 2008 Dec 09.
Article in English | MEDLINE | ID: mdl-18799742

ABSTRACT

Previous work from our group showed that intrathecal (i.t.) administration of substances such as glutamate, NMDA, or PGE(2) induced sensitization of the primary nociceptive neuron (PNN hypernociception) that was inhibited by a distal intraplantar (i.pl.) injection of either morphine or dipyrone. This pharmacodynamic phenomenon is referred to in the present work as "teleantagonism". We previously observed that the antinociceptive effect of i.t. morphine could be blocked by injecting inhibitors of the NO signaling pathway in the paw (i.pl.), and this effect was used to explain the mechanism of opioid-induced peripheral analgesia by i.t. administration. The objective of the present investigation was to determine whether this teleantagonism phenomenon was specific to this biochemical pathway (NO) or was a general property of the PNNs. Teleantagonism was investigated by administering test substances to the two ends of the PNN (i.e., to distal and proximal terminals; i.pl. plus i.t. or i.t. plus i.pl. injections). We found teleantagonism when: (i) inhibitors of the NO signaling pathway were injected distally during the antinociception induced by opioid agonists; (ii) a nonselective COX inhibitor was tested against PNN sensitization by IL-1beta; (iii) selective opioid-receptor antagonists tested against antinociception induced by corresponding selective agonists. Although the dorsal root ganglion seems to be an important site for drug interactions, the teleantagonism phenomenon suggests that, in PNNs, a local sensitization spreads to the entire cell and constitutes an intriguing and not yet completely understood pharmacodynamic property of this group of neurons.


Subject(s)
Analgesics, Opioid/pharmacology , Morphine/pharmacology , Nociceptors/drug effects , Pain/drug therapy , Sensory Receptor Cells/drug effects , Animals , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Dinoprostone/pharmacology , Dopamine/pharmacology , Drug Interactions , Enzyme Inhibitors/pharmacology , Indomethacin/pharmacology , Interleukin-1beta/pharmacology , Male , Naloxone/pharmacology , Narcotic Antagonists/pharmacology , Nitric Oxide/metabolism , Oxadiazoles/pharmacology , Pain/metabolism , Pyrrolidines/pharmacology , Quinoxalines/pharmacology , Rats , Rats, Wistar , Signal Transduction/drug effects , omega-N-Methylarginine/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...