Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
J Comput Assist Tomogr ; 48(1): 150-155, 2024.
Article in English | MEDLINE | ID: mdl-37551157

ABSTRACT

OBJECTIVE: Imaging is crucial in the assessment of head and neck cancers for site, extension, and enlarged lymph nodes. Restriction spectrum imaging (RSI) is a new diffusion-weighted magnetic resonance imaging (MRI) technique that enhances the ability to differentiate aggressive cancer from low-grade or benign tumors and helps guide treatment and biopsy. Its contribution to imaging of brain and prostate tumors has been previously published. However, there are no prior studies using RSI sequence in head and neck tumors. The purpose of this study was to evaluate the feasibility of performing RSI in head and neck cancer. METHODS: An additional RSI sequence was added in the routine MRI neck protocol for 13 patients diagnosed with head and neck cancer between November 2018 and April 2019. Restriction spectrum imaging sequence was performed with b values of 0, 500, 1500, and 3000 s/mm 2 and 29 directions on 1.5T magnetic resonance scanners.Diffusion-weighted imaging (DWI) images and RSI images were compared according to their ability to detect the primary malignancy and possible metastatic lymph nodes. RESULTS: In 71% of the patients, RSI outperformed DWI in detecting the primary malignancy and possible metastatic lymph nodes, whereas in the remaining cases, the 2 were comparable. In 66% of the patients, RSI detected malignant lymph nodes that DWI/apparent diffusion coefficient failed to detect. CONCLUSIONS: This is the first study of RSI in head and neck imaging and showed its superiority over the conventional DWI sequence. Because of its ability to differentiate benign and malignant lymph nodes in some cases, the addition of RSI to routine head and neck MRI should be considered.


Subject(s)
Head and Neck Neoplasms , Male , Humans , Pilot Projects , Head and Neck Neoplasms/diagnostic imaging , Lymph Nodes/pathology , Neck/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Sensitivity and Specificity
2.
JAMA Netw Open ; 4(1): e2034045, 2021 01 04.
Article in English | MEDLINE | ID: mdl-33449096

ABSTRACT

Importance: After neoadjuvant chemotherapy (NAC), pathologic complete response (pCR) is an optimal outcome and a surrogate end point for improved disease-free and overall survival. To date, surgical resection remains the only reliable method for diagnosing pCR. Objective: To evaluate the accuracy of magnetic resonance imaging (MRI)-guided biopsy for diagnosing a pCR after NAC compared with reference-standard surgical resection. Design, Setting, and Participants: Single-arm, phase 1, nonrandomized controlled trial in a single tertiary care cancer center from September 26, 2017, to July 29, 2019. The median follow-up was 1.26 years (interquartile range, 0.85-1.59 years). Data analysis was performed in November 2019. Eligible patients had (1) stage IA to IIIC biopsy-proven operable invasive breast cancer; (2) standard-of-care NAC; (3) MRI before and after NAC, with imaging complete response defined as no residual enhancement on post-NAC MRI; and (4) definitive surgery. Patients were excluded if they were younger than 18 years, had a medical reason precluding study participation, or had a prior history of breast cancer. Interventions: Post-NAC MRI-guided biopsy without the use of intravenous contrast of the tumor bed before definitive surgery. Main Outcomes and Measures: The primary end point was the negative predictive value of MRI-guided biopsy, with true-negative defined as negative results of the biopsy (ie, no residual cancer) corresponding to a surgical pCR. Accuracy, sensitivity, positive predictive value, and specificity were also calculated. Two clinical definitions of pCR were independently evaluated: definition 1 was no residual invasive cancer; definition 2, no residual invasive or in situ cancer. Results: Twenty of 23 patients (87%) had evaluable data (median [interquartile range] age, 51.5 [39.0-57.5] years; 20 women [100%]; 13 White patients [65%]). Of the 20 patients, pre-NAC median tumor size on MRI was 3.0 cm (interquartile range, 2.0-5.0 cm). Nineteen of 20 patients (95%) had invasive ductal carcinoma; 15 of 20 (75%) had stage II cancer; 11 of 20 (55%) had ERBB2 (formerly HER2 or HER2/neu)-positive cancer; and 6 of 20 (30%) had triple-negative cancer. Surgical pathology demonstrated a pCR in 13 of 20 (65%) patients and no pCR in 7 of 20 patients (35%) when pCR definition 1 was used. Results of MRI-guided biopsy had a negative predictive value of 92.8% (95% CI, 66.2%-99.8%), with accuracy of 95% (95% CI, 75.1%-99.9%), sensitivity of 85.8% (95% CI, 42.0%-99.6%), positive predictive value of 100%, and specificity of 100% for pCR definition 1. Only 1 patient had a false-negative MRI-guided biopsy result (surgical pathology showed <0.02 cm of residual invasive cancer). Conclusions and Relevance: This study's results suggest that the accuracy of MRI-guided biopsy to diagnose a post-NAC pCR approaches that of reference-standard surgical resection. MRI-guided biopsy may be a viable alternative to surgical resection for this population after NAC, which supports the need for further investigation. Trial Registration: ClinicalTrials.gov Identifier: NCT03289195.


Subject(s)
Breast Neoplasms/drug therapy , Breast Neoplasms/pathology , Image-Guided Biopsy/methods , Magnetic Resonance Imaging , Adult , Breast Neoplasms/surgery , Female , Humans , Middle Aged , Neoadjuvant Therapy , Pilot Projects , Predictive Value of Tests
3.
Radiol Artif Intell ; 2(5): e200007, 2020 Aug 26.
Article in English | MEDLINE | ID: mdl-33033804

ABSTRACT

PURPOSE: To investigate the feasibility of accelerating prostate diffusion-weighted imaging (DWI) by reducing the number of acquired averages and denoising the resulting image using a proposed guided denoising convolutional neural network (DnCNN). MATERIALS AND METHODS: Raw data from the prostate DWI scans were retrospectively gathered between July 2018 and July 2019 from six single-vendor MRI scanners. There were 103 datasets used for training (median age, 64 years; interquartile range [IQR], 11), 15 for validation (median age, 68 years; IQR, 12), and 37 for testing (median age, 64 years; IQR, 12). High b-value diffusion-weighted (hb DW) data were reconstructed into noisy images using two averages and reference images using all 16 averages. A conventional DnCNN was modified into a guided DnCNN, which uses the low b-value DW image as a guidance input. Quantitative and qualitative reader evaluations were performed on the denoised hb DW images. A cumulative link mixed regression model was used to compare the readers' scores. The agreement between the apparent diffusion coefficient (ADC) maps (denoised vs reference) was analyzed using Bland-Altman analysis. RESULTS: Compared with the original DnCNN, the guided DnCNN produced denoised hb DW images with higher peak signal-to-noise ratio (32.79 ± 3.64 [standard deviation] vs 33.74 ± 3.64), higher structural similarity index (0.92 ± 0.05 vs 0.93 ± 0.04), and lower normalized mean square error (3.9% ± 10 vs 1.6% ± 1.5) (P < .001 for all). Compared with the reference images, the denoised images received higher image quality scores from the readers (P < .0001). The ADC values based on the denoised hb DW images were in good agreement with the reference ADC values (mean ADC difference ranged from -0.04 to 0.02 × 10-3 mm2/sec). CONCLUSION: Accelerating prostate DWI by reducing the number of acquired averages and denoising the resulting image using the proposed guided DnCNN is technically feasible. Supplemental material is available for this article. © RSNA, 2020.

4.
J Orthop Trauma ; 34(12): 662-668, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33079848

ABSTRACT

OBJECTIVE: Disrupted blood supply has been proposed as an underlying cause for delayed union in tibial shaft fractures (OTA/AO 42). Although tibial blood supply has been qualitatively evaluated, quantitative studies are lacking. The purpose of this project was to quantify the relative contribution of the endosteal supply to the tibial diaphysis. METHODS: The superficial femoral artery of 8 fresh frozen cadaveric matched pair lower extremities was cannulated. The nutrient artery was ligated at its proximal branch point in experimental limbs. Pregadolinium and postgadolinium enhanced magnetic resonance imaging was performed with high resolution fat-suppressed ultrashort echo time magnetic resonance imaging sequences. Perfusion was assessed in 3 zones (outer, central, and inner cortex) for the proximal, middle, and distal diaphysis, respectively, using custom software to quantify and compare signal intensity between experimental and control limbs. RESULTS: On average, the endosteal system supplied 91.4% (±3.9%) of the cortex and was the predominant blood supply for the inner, central, and outer thirds. The dominance of the endosteal contribution was most pronounced in the inner two-third of the cortex, with more than 97% loss of perfusion. Disruption of the nutrient artery also resulted in 76.3% (±11.2%) loss of perfusion of the outer one-third of the cortex. CONCLUSION: This quantitative study revealed a predominance of endosteal blood supply to all areas (inner, middle, and outer thirds) of the tibial diaphyseal cortex. To prevent delayed bone healing, surgeons should take care to preserve the remaining periosteal vascular network in fracture patterns in which the nutrient artery has likely been disrupted.


Subject(s)
Diaphyses , Tibial Fractures , Bone and Bones , Diaphyses/diagnostic imaging , Humans , Tibia/diagnostic imaging , Tibia/surgery , Tibial Fractures/diagnostic imaging , Tibial Fractures/surgery
5.
Breast Cancer Res ; 22(1): 58, 2020 05 28.
Article in English | MEDLINE | ID: mdl-32466799

ABSTRACT

BACKGROUND: Ultrafast dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI)-derived kinetic parameters have demonstrated at least equivalent accuracy to standard DCE-MRI in differentiating malignant from benign breast lesions. However, it is unclear if they have any efficacy as prognostic imaging markers. The aim of this study was to investigate the relationship between ultrafast DCE-MRI-derived kinetic parameters and breast cancer characteristics. METHODS: Consecutive breast MRI examinations between February 2017 and January 2018 were retrospectively reviewed to determine those examinations that meet the following inclusion criteria: (1) BI-RADS 4-6 MRI performed on a 3T scanner with a 16-channel breast coil and (2) a hybrid clinical protocol with 15 phases of ultrafast DCE-MRI (temporal resolution of 2.7-4.6 s) followed by early and delayed phases of standard DCE-MRI. The study included 125 examinations with 142 biopsy-proven breast cancer lesions. Ultrafast DCE-MRI-derived kinetic parameters (maximum slope [MS] and bolus arrival time [BAT]) were calculated for the entire volume of each lesion. Comparisons of these parameters between different cancer characteristics were made using generalized estimating equations, accounting for the presence of multiple lesions per patient. All comparisons were exploratory and adjustment for multiple comparisons was not performed; P values < 0.05 were considered statistically significant. RESULTS: Significantly larger MS and shorter BAT were observed for invasive carcinoma than ductal carcinoma in situ (DCIS) (P < 0.001 and P = 0.008, respectively). Significantly shorter BAT was observed for invasive carcinomas with more aggressive characteristics than those with less aggressive characteristics: grade 3 vs. grades 1-2 (P = 0.025), invasive ductal carcinoma vs. invasive lobular carcinoma (P = 0.002), and triple negative or HER2 type vs. luminal type (P < 0.001). CONCLUSIONS: Ultrafast DCE-MRI-derived parameters showed a strong relationship with some breast cancer characteristics, especially histopathology and molecular subtype.


Subject(s)
Breast Neoplasms/diagnostic imaging , Adult , Aged , Breast Neoplasms/pathology , Breast Neoplasms/therapy , Carcinoma, Ductal, Breast/diagnostic imaging , Carcinoma, Ductal, Breast/pathology , Carcinoma, Ductal, Breast/therapy , Carcinoma, Lobular/diagnostic imaging , Carcinoma, Lobular/pathology , Carcinoma, Lobular/therapy , Contrast Media , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging/methods , Middle Aged , Prognosis , Retrospective Studies , Young Adult
6.
Radiol Imaging Cancer ; 2(3): e190076, 2020 05.
Article in English | MEDLINE | ID: mdl-33778712

ABSTRACT

Multishot multiplexed sensitivity-encoding diffusion-weighted imaging is a feasible and easily implementable routine breast MRI protocol that yields high-quality diffusion-weighted breast images.Purpose: To compare multiplexed sensitivity-encoding (MUSE) diffusion-weighted imaging (DWI) and single-shot DWI for lesion visibility and differentiation of malignant and benign lesions within the breast.Materials and Methods: In this prospective institutional review board-approved study, both MUSE DWI and single-shot DWI sequences were first optimized in breast phantoms and then performed in a group of patients. Thirty women (mean age, 51.1 years ± 10.1 [standard deviation]; age range, 27-70 years) with 37 lesions were included in this study and underwent scanning using both techniques. Visual qualitative analysis of diffusion-weighted images was accomplished by two independent readers; images were assessed for lesion visibility, adequate fat suppression, and the presence of artifacts. Quantitative analysis was performed by calculating apparent diffusion coefficient (ADC) values and image quality parameters (signal-to-noise ratio [SNR] for lesions and fibroglandular tissue; contrast-to-noise ratio) by manually drawing regions of interest within the phantoms and breast tumor tissue. Interreader variability was determined using the Cohen κ coefficient, and quantitative differences between MUSE DWI and single-shot DWI were assessed using the Mann-Whitney U test; significance was defined at P < .05.Results: MUSE DWI yielded significantly improved image quality compared with single-shot DWI in phantoms (SNR, P = .001) and participants (lesion SNR, P = .009; fibroglandular tissue SNR, P = .05; contrast-to-noise ratio, P = .008). MUSE DWI ADC values showed a significant difference between malignant and benign lesions (P < .001). No significant differences were found between MUSE DWI and single-shot DWI in the mean, maximum, and minimum ADC values (P = .96, P = .28, and P = .49, respectively). Visual qualitative analysis resulted in better lesion visibility for MUSE DWI over single-shot DWI (κ = 0.70).Conclusion: MUSE DWI is a promising high-spatial-resolution technique that may enhance breast MRI protocols without the need for contrast material administration in breast screening.Keywords: Breast, MR-Diffusion Weighted Imaging, OncologySupplemental material is available for this article.© RSNA, 2020.


Subject(s)
Breast Neoplasms/diagnostic imaging , Breast/diagnostic imaging , Diffusion Magnetic Resonance Imaging , Adult , Aged , Feasibility Studies , Female , Humans , Middle Aged , Prospective Studies
7.
Eur Radiol ; 30(2): 756-766, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31468162

ABSTRACT

OBJECTIVES: This study aims to evaluate ultrafast DCE-MRI-derived kinetic parameters that reflect contrast agent inflow effects in differentiating between subcentimeter BI-RADS 4-5 breast carcinomas and benign lesions. METHODS: We retrospectively reviewed consecutive 3-T MRI performed from February to October 2017, during which ultrafast DCE-MRI was performed as part of a hybrid clinical protocol with conventional DCE-MRI. In total, 301 female patients with 369 biopsy-proven breast lesions were included. Ultrafast DCE-MRI was acquired continuously over approximately 60 s (temporal resolution, 2.7-7.1 s/phase) starting simultaneously with the start of contrast injection. Four ultrafast DCE-MRI-derived kinetic parameters (maximum slope [MS], contrast enhancement ratio [CER], bolus arrival time [BAT], and initial area under gadolinium contrast agent concentration [IAUGC]) and one conventional DCE-MRI-derived kinetic parameter (signal enhancement ratio [SER]) were calculated for each lesion. Wilcoxon rank sum test or Fisher's exact test was performed to compare kinetic parameters, volume, diameter, age, and BI-RADS morphological descriptors between subcentimeter carcinomas and benign lesions. Univariate/multivariate logistic regression analyses were performed to determine predictive parameters for subcentimeter carcinomas. RESULTS: In total, 125 lesions (26 carcinomas and 99 benign lesions) were identified as BI-RADS 4-5 subcentimeter lesions. Subcentimeter carcinomas demonstrated significantly larger MS and SER and shorter BAT than benign lesions (p = 0.0117, 0.0046, and 0.0102, respectively). MS, BAT, and age were determined as significantly predictive for subcentimeter carcinoma (p = 0.0208, 0.0023, and < 0.0001, respectively). CONCLUSIONS: Ultrafast DCE-MRI-derived kinetic parameters may be useful in differentiating subcentimeter BI-RADS 4 and 5 carcinomas from benign lesions. KEY POINTS: • Ultrafast DCE-MRI can generate kinetic parameters, effectively differentiating breast carcinomas from benign lesions. • Subcentimeter carcinomas demonstrated significantly larger maximum slope and shorter bolus arrival time than benign lesions. • Maximum slope and bolus arrival time contribute to better management of suspicious subcentimeter breast lesions.


Subject(s)
Breast Neoplasms/diagnostic imaging , Contrast Media , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Adult , Breast/diagnostic imaging , Breast/pathology , Breast Neoplasms/pathology , Diagnosis, Differential , Female , Humans , Kinetics , Middle Aged , Retrospective Studies
8.
J Neuroimaging ; 30(1): 40-44, 2020 01.
Article in English | MEDLINE | ID: mdl-31721362

ABSTRACT

BACKGROUND AND PURPOSE: We aimed to evaluate the feasibility of an ultrafast whole head contrast-enhanced MRA (CE-MRA) in morphometric assessment of intracranial aneurysms in comparison to routinely used time-of-flight (TOF)-MRA. METHODS: In this prospective single institutional study, patients with known untreated intracranial aneurysm underwent MRA. Routine multislab TOF-MRA was obtained with a 3D voxel sizes of .6 × .6 × 1 (6-minute acquisition time). CE-MRA of whole head was obtained using Differential Subsampling with Cartesian Ordering (DISCO) and 2D Auto-calibrating Reconstruction for Cartesian imaging with a 3D voxel-sizes of .75 × .75 × 1 mm3 during a 6-second temporal resolution. Morphometric features of intracranial aneurysms, including size, aneurysm sac morphology, and the presence of intraluminal thrombosis, were assessed on both techniques. Statistical analysis was performed using a combination of Kappa test, Bland-Altman, and correlation coefficient analysis. RESULTS: A total of 34 aneurysms in 28 patients were included. Aneurysm size measurements (mean ± SD) were similar between DISCO-MRA (4.1 ± 2.3 mm) and TOF-MRA (4.3 ± 2.8 mm) (P = .27). Bland-Altman analysis showed a mean difference of .4 mm and there was excellent correlation r = .91 (95% CI: .87-.96). In six aneurysms (17.6%), TOF-MRA was nonconfidant to exclude intraluminal thrombosis. In seven aneurysms (20%), TOF-MRA was unable or nonconfidant in depicting aneurysm sac morphology. CONCLUSIONS: Described ultrafast high spatial-resolution MRA is superior to routinely used TOF-MRA in assessment of morphometric features of intracranial aneurysms, such as intraluminal thrombosis and aneurysm morphology, and is obtained in a fraction of the time (6 seconds).


Subject(s)
Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Intracranial Aneurysm/diagnostic imaging , Magnetic Resonance Angiography/methods , Adult , Aged , Aged, 80 and over , Contrast Media , Female , Follow-Up Studies , Humans , Male , Middle Aged , Prospective Studies , Sensitivity and Specificity
9.
J Comput Assist Tomogr ; 43(1): 143-148, 2019.
Article in English | MEDLINE | ID: mdl-30119065

ABSTRACT

RATIONALE AND OBJECTIVES: The purpose of this study is to compare image quality, presence and grade of artifacts, signal-to-noise ratio, and apparent diffusion coefficient (ADC) values in pancreatic tissue between high-resolution navigator-triggered (NT) restricted field of view (rFOV) FOCUS single-shot (SS) echo-planar imaging (EPI) diffusion-weighted imaging (DWI) and NT large FOV SS-EPI DWI. MATERIALS AND METHODS: Magnetic resonance imaging examinations were performed with GE 3-T systems using a 32-channel body array coil. Seventeen consecutive patients were imaged. A 5-point scale semiquantitative grading system was used to evaluate image quality and general artifacts. Signal-to-noise ratio and ADC were measured in the head, body, and tail of the pancreas. Statistical analysis was performed using Student t test and Wilcoxon signed rank test, with differences considered significant for P value less than 0.05. RESULTS: More artifacts were present on large FOV compared with rFOV FOCUS SS-EPI DW images (P < 0.01). Restricted field of view image quality was subjectively better (P < 0.01). No difference in the signal-to-noise ratio was demonstrated between the 2 image datasets. Apparent diffusion coefficient values were significantly lower (P < 0.01) when calculated from rFOV images than large FOV images. CONCLUSIONS: Our results demonstrate better image quality and reduced artifacts in rFOV images compared with large FOV DWI. Measurements from ADC maps derived from rFOV DWI show significantly lower ADC values when compared with ADC maps derived from large FOV DWI.


Subject(s)
Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Image Interpretation, Computer-Assisted/methods , Image Processing, Computer-Assisted/methods , Pancreatic Diseases/diagnostic imaging , Aged , Aged, 80 and over , Artifacts , Feasibility Studies , Female , Humans , Male , Middle Aged , Pancreas/diagnostic imaging , Pancreas/pathology , Pancreatic Diseases/pathology , Reproducibility of Results , Retrospective Studies , Signal-To-Noise Ratio
10.
J Magn Reson Imaging ; 47(5): 1171-1189, 2018 05.
Article in English | MEDLINE | ID: mdl-29083521

ABSTRACT

Diffusion tensor imaging (DTI) is a noninvasive magnetic resonance imaging (MRI) technique that measures the extent of restricted water diffusion and anisotropy in biological tissue. Although DTI has been widely applied in the brain, more recently researchers have used it to characterize nerve pathology in the setting of entrapment neuropathy, traumatic injury, and tumor. DTI artifacts are exacerbated when imaging off isocenter in the body. Anecdotally, the most significant artifacts in peripheral nerve DTI include magnetic field inhomogeneity, motion, incomplete fat suppression, aliasing, and distortion. High spatial resolution is also required to reliably evaluate smaller peripheral nerves. This article provides an overview of such technical issues, particularly when trying to apply DTI in the clinical setting, and offers potential solutions. LEVEL OF EVIDENCE: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2018;47:1171-1189.


Subject(s)
Diffusion Tensor Imaging/methods , Peripheral Nerves/diagnostic imaging , Anisotropy , Artifacts , Decision Support Systems, Clinical , Diffusion Tensor Imaging/trends , Humans , Image Processing, Computer-Assisted/methods , Magnetic Fields , Motion , Radiology/methods , Reproducibility of Results , Sensitivity and Specificity , Signal-To-Noise Ratio
11.
Europace ; 16(1): 133-41, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24014803

ABSTRACT

AIMS: Prior work has demonstrated that magnetic resonance imaging (MRI) strain can separate necrotic/stunned myocardium from healthy myocardium in the left ventricle (LV). We surmised that high-resolution MRI strain, using navigator-echo-triggered DENSE, could differentiate radiofrequency ablated tissue around the pulmonary vein (PV) from tissue that had not been damaged by radiofrequency energy, similarly to navigated 3D myocardial delayed enhancement (3D-MDE). METHODS AND RESULTS: A respiratory-navigated 2D-DENSE sequence was developed, providing strain encoding in two spatial directions with 1.2 × 1.0 × 4 mm(3) resolution. It was tested in the LV of infarcted sheep. In four swine, incomplete circumferential lesions were created around the right superior pulmonary vein (RSPV) using ablation catheters, recorded with electro-anatomic mapping, and imaged 1 h later using atrial-diastolic DENSE and 3D-MDE at the left atrium/RSPV junction. DENSE detected ablation gaps (regions with >12% strain) in similar positions to 3D-MDE (2D cross-correlation 0.89 ± 0.05). Low-strain (<8%) areas were, on average, 33% larger than equivalent MDE regions, so they include both injured and necrotic regions. Optimal DENSE orientation was perpendicular to the PV trunk, with high shear strain in adjacent viable tissue appearing as a sensitive marker of ablation lesions. CONCLUSIONS: Magnetic resonance imaging strain may be a non-contrast alternative to 3D-MDE in intra-procedural monitoring of atrial ablation lesions.


Subject(s)
Catheter Ablation/methods , Elasticity Imaging Techniques/methods , Heart Atria/surgery , Myocardial Infarction/surgery , Surgery, Computer-Assisted/methods , Animals , Heart Atria/pathology , Myocardial Infarction/pathology , Sheep , Swine
12.
Circ Arrhythm Electrophysiol ; 2(6): 695-704, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19841033

ABSTRACT

BACKGROUND: The MRI-compatible electrophysiology system previously used for MR-guided left ventricular electroanatomic mapping was enhanced with improved MR tracking, an MR-compatible radiofrequency ablation system and higher-resolution imaging sequences to enable mapping, ablation, and ablation monitoring in smaller cardiac structures. MR-tracked navigation was performed to the left atrium (LA) and atrioventricular (AV) node, followed by LA electroanatomic mapping and radiofrequency ablation of the pulmonary veins (PVs) and AV node. METHODS AND RESULTS: One ventricular ablation, 7 PV ablations, 3 LA mappings, and 3 AV node ablations were conducted. Three MRI-compatible devices (ablation/mapping catheter, torqueable sheath, stimulation/pacing catheter) were used, each with 4 to 5 tracking microcoils. Transseptal puncture was performed under x-ray, with all other procedural steps performed in the MRI. Preacquired MRI roadmaps served for real-time catheter navigation. Simultaneous tracking of 3 devices was performed at 13 frames per second. LA mapping and PV radiofrequency ablation were performed using tracked ablation catheters and sheaths. Ablation points were registered and verified after ablation using 3D myocardial delayed enhancement and postmortem gross tissue examination. Complete LA electroanatomic mapping was achieved in 3 of 3 pigs, Right inferior PV circumferential ablation was achieved in 3 of 7 pigs, with incomplete isolation caused by limited catheter deflection. During AV node ablation, ventricular pacing was performed, 3 devices were simultaneously tracked, and intracardiac ECGs were displayed. 3D myocardial delayed enhancement visualized node injury 2 minutes after ablation. AV node block succeeded in 2 of 3 pigs, with 1 temporary block. CONCLUSIONS: LA mapping, PV radiofrequency ablation, and AV node ablation were demonstrated under MRI guidance. Intraprocedural 3D myocardial delayed enhancement assessed lesion positional accuracy and dimensions.


Subject(s)
Atrioventricular Node/surgery , Catheter Ablation , Electrophysiologic Techniques, Cardiac , Magnetic Resonance Imaging, Interventional , Pulmonary Veins/surgery , Surgery, Computer-Assisted , Animals , Atrioventricular Node/pathology , Atrioventricular Node/physiopathology , Cardiac Pacing, Artificial , Catheter Ablation/instrumentation , Electrocardiography , Electrophysiologic Techniques, Cardiac/instrumentation , Equipment Design , Heart Atria/pathology , Heart Atria/physiopathology , Heart Atria/surgery , Image Interpretation, Computer-Assisted , Imaging, Three-Dimensional , Magnetic Resonance Imaging, Interventional/instrumentation , Models, Animal , Predictive Value of Tests , Pulmonary Veins/pathology , Pulmonary Veins/physiopathology , Surgery, Computer-Assisted/instrumentation , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...