Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Respir Res ; 25(1): 161, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614991

ABSTRACT

BACKGROUND: Longitudinal studies have identified childhood asthma as a risk factor for obstructive pulmonary disease (COPD) and asthma-COPD overlap (ACO) where persistent airflow limitation can develop more aggressively. However, a causal link between childhood asthma and COPD/ACO remains to be established. Our study aimed to model the natural history of childhood asthma and COPD and to investigate the cellular/molecular mechanisms that drive disease progression. METHODS: Allergic airways disease was established in three-week-old young C57BL/6 mice using house dust mite (HDM) extract. Mice were subsequently exposed to cigarette smoke (CS) and HDM for 8 weeks. Airspace enlargement (emphysema) was measured by the mean linear intercept method. Flow cytometry was utilised to phenotype lung immune cells. Bulk RNA-sequencing was performed on lung tissue. Volatile organic compounds (VOCs) in bronchoalveolar lavage-fluid were analysed to screen for disease-specific biomarkers. RESULTS: Chronic CS exposure induced emphysema that was significantly augmented by HDM challenge. Increased emphysematous changes were associated with more abundant immune cell lung infiltration consisting of neutrophils, interstitial macrophages, eosinophils and lymphocytes. Transcriptomic analyses identified a gene signature where disease-specific changes induced by HDM or CS alone were conserved in the HDM-CS group, and further revealed an enrichment of Mmp12, Il33 and Il13, and gene expression consistent with greater expansion of alternatively activated macrophages. VOC analysis also identified four compounds increased by CS exposure that were paradoxically reduced in the HDM-CS group. CONCLUSIONS: Early-life allergic airways disease worsened emphysematous lung pathology in CS-exposed mice and markedly alters the lung transcriptome.


Subject(s)
Asthma , Cigarette Smoking , Emphysema , Hypersensitivity , Pulmonary Emphysema , Humans , Animals , Mice , Mice, Inbred C57BL , Pyroglyphidae , Cigarette Smoking/adverse effects , Pulmonary Emphysema/etiology , Inflammation
2.
Respirology ; 27(8): 617-629, 2022 08.
Article in English | MEDLINE | ID: mdl-35599245

ABSTRACT

BACKGROUND AND OBJECTIVE: Chronic obstructive pulmonary disease (COPD) is a devastating disease commonly caused by cigarette smoke (CS) exposure that drives tissue injury by persistently recruiting myeloid cells into the lungs. A significant portion of COPD patients also present with overlapping asthma pathology including eosinophilic inflammation. The ßc cytokine family includes granulocyte monocyte-colony-stimulating factor, IL-5 and IL-3 that signal through their common receptor subunit ßc to promote the expansion and survival of multiple myeloid cells including monocytes/macrophages, neutrophils and eosinophils. METHODS: We have used our unique human ßc receptor transgenic (hßc Tg) mouse strain that expresses human ßc instead of mouse ßc and ßIL3 in an acute CS exposure model. Lung tissue injury was assessed by histology and measurement of albumin and lactate dehydrogenase levels in the bronchoalveolar lavage (BAL) fluid. Transgenic mice were treated with an antibody (CSL311) that inhibits human ßc signalling. RESULTS: hßc Tg mice responded to acute CS exposure by expanding blood myeloid cell numbers and recruiting monocyte-derived macrophages (cluster of differentiation 11b+ [CD11b+ ] interstitial and exudative macrophages [IM and ExM]), neutrophils and eosinophils into the lungs. This inflammatory response was associated with lung tissue injury and oedema. Importantly, CSL311 treatment in CS-exposed mice markedly reduced myeloid cell numbers in the blood and BAL compartment. Furthermore, CSL311 significantly reduced lung CD11b+ IM and ExM, neutrophils and eosinophils, and this decline was associated with a significant reduction in matrix metalloproteinase-12 (MMP-12) and IL-17A expression, tissue injury and oedema. CONCLUSION: This study identifies CSL311 as a therapeutic antibody that potently inhibits immunopathology and lung injury caused by acute CS exposure.


Subject(s)
Cigarette Smoking , Lung Injury , Pulmonary Disease, Chronic Obstructive , Animals , Bronchoalveolar Lavage Fluid , Cigarette Smoking/adverse effects , Eosinophils , Humans , Lung/pathology , Mice , Mice, Inbred C57BL , Pulmonary Disease, Chronic Obstructive/metabolism
3.
Cell Signal ; 57: 2-9, 2019 05.
Article in English | MEDLINE | ID: mdl-30710631

ABSTRACT

In cancer, complex intracellular and intercellular signals constantly evolve for the advantage of the tumour cells but to the disadvantage of the whole organism. Decades of intensive research have revealed the critical roles of cellular signalling pathways in regulating complex cell behaviours which influence tumour development, growth and therapeutic response, and ultimately patient outcome. Most studies have focussed on specific pathways and the resulting tumour cell function in a rather linear fashion, partly due to the available methodologies and partly due to the traditionally reductionist approach to research. Advances in cancer research, including genomic technologies have led to a deep appreciation of the complex signals and pathway interactions operating in tumour cells. In this review we examine the role and interaction of three major cell signalling pathways, PI3K, MAPK and cAMP, in regulating tumour cell functions and discuss the prospects for exploiting this knowledge to better treat difficult to treat cancers, using glioblastoma, the most common and deadly malignant brain cancer, as the example disease.


Subject(s)
Brain Neoplasms/metabolism , Signal Transduction/physiology , Tumor Microenvironment/physiology , Cyclic AMP/metabolism , Drug Resistance , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...