Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Neurophysiol ; 115(6): 3264-74, 2016 06 01.
Article in English | MEDLINE | ID: mdl-27052581

ABSTRACT

Spike timing-dependent plasticity in the hippocampus has rarely been studied in vivo. Using extracellular potential and current source density analysis in urethane-anesthetized adult rats, we studied synaptic plasticity at the basal dendritic excitatory synapse in CA1 after excitation-spike (ES) pairing; E was a weak basal dendritic excitation evoked by stratum oriens stimulation, and S was a population spike evoked by stratum radiatum apical dendritic excitation. We hypothesize that positive ES pairing-generating synaptic excitation before a spike-results in long-term potentiation (LTP) while negative ES pairing results in long-term depression (LTD). Pairing (50 pairs at 5 Hz) at ES intervals of -10 to 0 ms resulted in significant input-specific LTP of the basal dendritic excitatory sink, lasting 60-120 min. Pairing at +10- to +20-ms ES intervals, or unpaired 5-Hz stimulation, did not induce significant basal dendritic or apical dendritic LTP or LTD. No basal dendritic LTD was found after stimulation of stratum oriens with 200 pairs of high-intensity pulses at 25-ms interval. Pairing-induced LTP was abolished by pretreatment with an N-methyl-d-aspartate receptor antagonist, 3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP), which also reduced spike bursting during 5-Hz pairing. Pairing at 0.5 Hz did not induce spike bursts or basal dendritic LTP. In conclusion, ES pairing at 5 Hz resulted in input-specific basal dendritic LTP at ES intervals of -10 ms to 0 ms but no LTD at ES intervals of -20 to +20 ms. Associative LTP likely occurred because of theta-rhythmic coincidence of subthreshold excitation with a backpropagated spike burst, which are conditions that can occur naturally in the hippocampus.


Subject(s)
Action Potentials/physiology , Dendrites/physiology , Excitatory Postsynaptic Potentials/physiology , Hippocampus/cytology , Neurons/cytology , Action Potentials/drug effects , Analysis of Variance , Animals , Biophysics , Dendrites/drug effects , Electric Stimulation , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Male , Piperazines/pharmacology , Rats , Rats, Long-Evans , Time Factors
2.
Synapse ; 65(7): 677-86, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21190218

ABSTRACT

Synaptic plasticity may depend not only on the afferent fibers but also on the recipient structure. The medial perforant path (MPP) from the entorhinalcortex projects to both the dentate gyrus (DG) and CA3, resulting in excitatory postsynaptic potentials (EPSPs) in both areas. In this study, we showed that long-term depression (LTD) following low-frequency stimulation of MPP was found only in CA3a, a CA3 subfield, but not in DG. Field potentials were recorded and current source density (CSD) analyzed in CA3a and DG following stimulation of MPP in urethane-anesthetized rats. MPP evoked a short-latency population spike (PS) and EPSP in CA3a, <2.5 ms delayed from the respective events in DG. A small electrolytic lesion of CA3a abolished the locally recorded PS in CA3a but did not affect the responses in the DG. Low-frequency stimulation of the MPP for 600 pulses at 5 Hz, but not at 1 Hz, resulted in LTD of up to 2 h in CA3a but not in DG. High-frequency stimulation (400 Hz bursts) of the MPP resulted in long-term potentiation (LTP) in both CA3a and DG. LTD at CA3a was blocked by a prior intracerebroventricular administration of an N-methyl-D-aspartate receptor (NMDAR) antagonist DL-2-amino-5-phosphonovaleric acid or a nonselective group I/II metabotropic glutamate receptor (mGluR) antagonist (RS)-α-methyl-4-carboxyphenylglycine. We conclude that an NMDAR and mGluR sensitive LTD is induced in CA3 but not in the DG following low-frequency MPP stimulation in vivo, and the bi-directional synaptic plasticity in CA3 may be responsible for its behavioral functions.


Subject(s)
Dentate Gyrus/physiology , Hippocampus/physiology , Long-Term Synaptic Depression/physiology , Perforant Pathway/physiology , Animals , Electric Stimulation , Electrophysiology , Evoked Potentials/physiology , Neurons/physiology , Rats , Rats, Long-Evans
SELECTION OF CITATIONS
SEARCH DETAIL
...