Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Drug Metab Dispos ; 49(3): 179-187, 2021 03.
Article in English | MEDLINE | ID: mdl-33376147

ABSTRACT

CYP2D6 is a major drug metabolizing enzyme with a buried active site. Channels leading to the active site from various enzyme surfaces are believed to facilitate ligand egress and access to the active site. The present study used molecular dynamics (MD) and in vitro studies with CYP2D6*1 and a Trp75-to-Ala mutant to examine channel gating in CYP2D6 by Trp75. MD simulations measured energy landscapes of Trp75 conformations and simulated substrate passage within channel 2b using bufuralol as a model substrate. Trp75 alternated between multiple stable states that supported substrate transport along channel 2b with low-energy barriers between states (∼ -1 kcal/mol). Trp75 conformations were stabilized primarily by hydrogen bonding between Trp75 and Glu222, Asn226, Ala225, or Gln72. Energy barriers were low between Trp75 conformations, allowing Trp75 to easily move between various conformations over time and to function in both binding to and moving substrates in the 2b channel of CYP2D6. Michaelis-Menten kinetic studies completed with purified enzyme in a reconstituted system showed overall reduced enzyme efficiency for metabolism of bufuralol and dextromethorphan by the Trp75Ala mutant compared with CYP2D6*1. In stopped-flow measurements, k off for dextromethorphan was decreased in the absence of Trp75. Our results support a role for Trp75 in substrate shuttling to the active site of CYP2D6. SIGNIFICANCE STATEMENT: Using combined molecular dynamics and in vitro assays, this study shows for the first time a role for Trp75 as a channel entrance gating residue in the mechanism of substrate binding/unbinding in CYP2D6. Energy landscapes derived from molecular dynamics were used to quantitate the strength of gating, and kinetics assays showed the impact on enzyme efficiency and k off of a Trp75Ala mutation.


Subject(s)
Cytochrome P-450 CYP2D6/metabolism , Ion Channel Gating/physiology , Tryptophan/metabolism , Animals , Crystallography, X-Ray/methods , Cytochrome P-450 CYP2D6/chemistry , Ethanolamines/metabolism , Ethanolamines/pharmacology , Ion Channel Gating/drug effects , Protein Structure, Secondary , Rats , Substrate Specificity/drug effects , Substrate Specificity/physiology , Tryptophan/chemistry
2.
Drug Metab Dispos ; 47(6): 567-573, 2019 06.
Article in English | MEDLINE | ID: mdl-30952677

ABSTRACT

Rolapitant [(Varubi), 5S,8S)-8-[[(1R)-1-[3,5 bis(trifluoromethyl phenyl]ethoxy]methyl]-8-phenyl-1,7-diazaspiro[4.5]decan-2-one] is a high-affinity NK1 receptor antagonist that was approved in September 2015 as a treatment for nausea and vomiting caused by chemotherapy. In vivo rolapitant moderately inhibits CYP2D6 for at least 7 days after one 180 mg dose. Due to the long inhibition time, we investigated rolapitant as a possible mechanism-based inactivator of CYP2D6. Rolapitant docked in the active site of CYP2D6 and displayed type I binding to CYP2D6 with a K s value of 1.2 ± 0.4 µM. However, in NADPH-, time-, and concentration-dependent assays of CYP2D6 activity, no evidence for mechanism-based inactivation and no metabolites of rolapitant were observed. Stopped-flow binding studies yielded a kon /koff (K d) value of 6.2 µM. The IC50 value for rolapitant inhibition of CYP2D6 activity was 24 µM, suggesting that inhibition is not due to tight binding of rolapitant to CYP2D6. By Lineweaver-Burk analysis, rolapitant behaved as a mixed, reversible inhibitor. The K i values of 20 and 34 µM were determined by Dixon analysis, with bufuralol and dextromethorphan as reporter substrates, respectively, and drug-drug interaction modeling did not predict the reported in vivo inhibition. The interaction of rolapitant with CYP2D6 was also examined in 1 microsecond molecular dynamics simulations. Rolapitant adopted multiple low-energy binding conformations near the active site, but at distances not consistent with metabolism. Given these findings, we do not see evidence that rolapitant is a mechanism-based inactivator. Moreover, the reversible inhibition of CYP2D6 by rolapitant may not fully account for the moderate inhibition described in vivo.


Subject(s)
Cytochrome P-450 CYP2D6 Inhibitors/therapeutic use , Cytochrome P-450 CYP2D6/metabolism , Spiro Compounds/therapeutic use , Catalytic Domain/physiology , Dextromethorphan/therapeutic use , Drug Interactions/physiology , Ethanolamines/therapeutic use , Humans
3.
Drug Metab Dispos ; 46(8): 1106-1117, 2018 08.
Article in English | MEDLINE | ID: mdl-29784728

ABSTRACT

Metabolic phenotype can be affected by multiple factors, including allelic variation and interactions with inhibitors. Human CYP2D6 is responsible for approximately 20% of cytochrome P450-mediated drug metabolism but consists of more than 100 known variants; several variants are commonly found in the population, whereas others are quite rare. Four CYP2D6 allelic variants-three with a series of mutations distal to the active site (*34, *17-2, *17-3) and one ultra-metabolizer with mutations near the active site (*53), along with reference *1 and an active site mutant of *1 (Thr309Ala)-were expressed, purified, and studied for interactions with the typical substrates dextromethorphan and bufuralol and the inactivator SCH 66712. We found that *34, *17-2, and *17-3 displayed reduced enzyme activity and NADPH coupling while producing the same metabolites as *1, suggesting a possible role for Arg296 in NADPH coupling. A higher-activity variant, *53, displayed similar NADPH coupling to *1 but was less susceptible to inactivation by SCH 66712. The Thr309Ala mutant showed similar activity to that of *1 but with greatly reduced NADPH coupling. Overall, these results suggest that kinetic and metabolic analysis of individual CYP2D6 variants is required to understand their possible contributions to variable drug response and the complexity of personalized medicine.


Subject(s)
Cytochrome P-450 CYP2D6/genetics , Dextromethorphan/metabolism , Ethanolamines/metabolism , Imidazoles/metabolism , Mutation/genetics , NADP/metabolism , Pyrimidines/metabolism , Alleles , Catalytic Domain/genetics , Cytochrome P-450 CYP2D6/metabolism , Humans , Inactivation, Metabolic , Kinetics , Phenotype
6.
Biochem Mol Biol Educ ; 43(1): 1-2, 2015.
Article in English | MEDLINE | ID: mdl-25395151
7.
Drug Metab Dispos ; 42(12): 2087-96, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25273356

ABSTRACT

Human cytochrome P450 3A4 (CYP3A4) is responsible for the metabolism of more than half of pharmaceutic drugs, and inactivation of CYP3A4 can lead to adverse drug-drug interactions. The substituted imidazole compounds 5-fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH 66712) and 1-[(2-ethyl-4-methyl-1H-imidazol-5-yl)methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine (EMTPP) have been previously identified as mechanism-based inactivators (MBI) of CYP2D6. The present study shows that both SCH 66712 and EMTPP are also MBIs of CYP3A4. Inhibition of CYP3A4 by SCH 66712 and EMTPP was determined to be concentration, time, and NADPH dependent. In addition, inactivation of CYP3A4 by SCH 66712 was shown to be unaffected by the presence of electrophile scavengers. SCH 66712 displays type I binding to CYP3A4 with a spectral binding constant (Ks) of 42.9 ± 2.9 µM. The partition ratios for SCH 66712 and EMTPP were 11 and 94, respectively. Whole protein mass spectrum analysis revealed 1:1 binding stoichiometry of SCH 66712 and EMTPP to CYP3A4 and a mass increase consistent with adduction by the inactivators without addition of oxygen. Heme adduction was not apparent. Multiple mono-oxygenation products with each inactivator were observed; no other products were apparent. These are the first MBIs to be shown to be potent inactivators of both CYP2D6 and CYP3A4.


Subject(s)
Cytochrome P-450 CYP3A/metabolism , Cytochrome P-450 Enzyme Inhibitors/pharmacology , Piperazines/pharmacology , Cytochrome P-450 CYP2D6/metabolism , Heme/metabolism , Humans , Imidazoles/pharmacology , Mass Spectrometry , NADP/metabolism , Piperazine , Pyridines/pharmacology , Pyrimidines/pharmacology
8.
PLoS One ; 9(10): e108607, 2014.
Article in English | MEDLINE | ID: mdl-25286176

ABSTRACT

Cytochrome P450 enzymes (CYPs) represent an important enzyme superfamily involved in metabolism of many endogenous and exogenous small molecules. CYP2D6 is responsible for ∼ 15% of CYP-mediated drug metabolism and exhibits large phenotypic diversity within CYPs with over 100 different allelic variants. Many of these variants lead to functional changes in enzyme activity and substrate selectivity. Herein, a molecular dynamics comparative analysis of four different variants of CYP2D6 was performed. The comparative analysis included simulations with and without SCH 66712, a ligand that is also a mechanism-based inactivator, in order to investigate the possible structural basis of CYP2D6 inactivation. Analysis of protein stability highlighted significantly altered flexibility in both proximal and distal residues from the variant residues. In the absence of SCH 66712, *34, *17-2, and *17-3 displayed more flexibility than *1, and *53 displayed more rigidity. SCH 66712 binding reversed flexibility in *17-2 and *17-3, through *53 remained largely rigid. Throughout simulations with docked SCH 66712, ligand orientation within the heme-binding pocket was consistent with previously identified sites of metabolism and measured binding energies. Subsequent tunnel analysis of substrate access, egress, and solvent channels displayed varied bottle-neck radii. Taken together, our results indicate that SCH 66712 should inactivate these allelic variants, although varied flexibility and substrate binding-pocket accessibility may alter its interaction abilities.


Subject(s)
Cytochrome P-450 CYP2D6/chemistry , Cytochrome P-450 CYP2D6/genetics , Imidazoles/pharmacology , Molecular Dynamics Simulation , Polymorphism, Genetic , Pyrimidines/pharmacology , Alleles , Crystallography, X-Ray , Imidazoles/chemistry , Ligands , Molecular Docking Simulation , Mutant Proteins/chemistry , Mutant Proteins/metabolism , Pyrimidines/chemistry , Substrate Specificity/drug effects , Thermodynamics , Time Factors
9.
Xenobiotica ; 44(4): 309-319, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24010633

ABSTRACT

1. Metoclopramide is a widely used clinical drug in a variety of medical settings with rare acute dystonic events reported. The aim of this study was to assess a previous report of inactivation of CYP2D6 by metoclopramide, to determine the contribution of various CYPs to metoclopramide metabolism, and to identify the mono-oxygenated products of metoclopramide metabolism. 2. Metoclopramide interacted with CYP2D6 with Type I binding and a Ks value of 9.56 ± 1.09 µM. CYP2D6 was the major metabolizer of metoclopramide and the two major products were N-deethylation of the diethyl amine and N-hydroxylation on the phenyl ring amine. CYPs 1A2, 2C9, 2C19, and 3A4 also metabolized metoclopramide. 3. While reversible inhibition of CYP2D6 was noted, CYP2D6 inactivation by metoclopramide was not observed under conditions of varying concentration or varying time using Supersomes(TM) or pooled human liver microsomes. 4. The major metabolites of metoclopramide were N-hydroxylation and N-deethylation formed most efficiently by CYP2D6 but also formed by all CYPs examined. Also, while metoclopramide is metabolized primarily by CYP2D6, it is not a mechanism-based inactivator of CYP2D6 in vitro.


Subject(s)
Cytochrome P-450 CYP2D6 Inhibitors , Cytochrome P-450 CYP2D6/metabolism , Metoclopramide/metabolism , Dopamine Antagonists/chemistry , Humans , Hydroxylamine/chemistry , Hydroxylation , Kinetics , Ligands , Liver/drug effects , Microsomes, Liver/metabolism , Models, Molecular , Molecular Docking Simulation , Recombinant Proteins/metabolism
12.
Drug Metab Lett ; 6(1): 7-14, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22372551

ABSTRACT

Human cytochrome P450 2D6 (CYP2D6) is involved in metabolism of approximately 25% of pharmaceutical drugs. Inactivation of CYP2D6 can lead to adverse drug interactions. Four inactivators of CYP2D6 have previously been identified: 5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine(SCH66712), (1-[(2-ethyl- 4-methyl-1H-imidazol-5-yl)-methyl]-4-[4-(trifluoromethyl)-2-pyridinyl]piperazine(EMTPP), paroxetine, and 3,4- methylenedioxymethamphetamine (MDMA). All four contain planar, aromatic groups as well as basic nitrogens common to CYP2D6 substrates. SCH66712 and EMTPP also contain piperazine groups and substituted imidazole rings that are common in pharmaceutical agents, though neither of these compounds is clinically relevant. Paroxetine and MDMA contain methylenedioxyphenyls. SCH66712 and EMTPP are both known protein adductors while paroxetine and MDMA are probable heme modifiers. The current study shows that each inactivator displays Type I binding with Ks values that vary by 2-orders of magnitude with lower Ks values associated with greater inactivation. Comparison of KI, kinact, and partition ratio values shows SCH66712 is the most potent inactivator. Molecular modeling experiments using AutoDock identify Phe120 as a key interaction for all four inactivators with face-to-face and edge-to-face pi interactions apparent. Distance between the ligand and heme iron correlates with potency of inhibition. Ligand conformations were scored according to their binding energies as calculated by AutoDock and correlation was observed between molecular models and Ks values.


Subject(s)
Cytochrome P-450 CYP2D6 Inhibitors , Enzyme Inhibitors/pharmacology , Models, Molecular , Cytochrome P-450 CYP2D6/metabolism , Enzyme Inhibitors/chemistry , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Ligands , N-Methyl-3,4-methylenedioxyamphetamine/chemistry , N-Methyl-3,4-methylenedioxyamphetamine/pharmacology , Paroxetine/chemistry , Paroxetine/pharmacology , Pyridines/chemistry , Pyridines/pharmacology , Pyrimidines/chemistry , Pyrimidines/pharmacology
14.
Drug Metab Dispos ; 39(6): 974-83, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21422192

ABSTRACT

5-Fluoro-2-[4-[(2-phenyl-1H-imidazol-5-yl)methyl]-1-piperazinyl]pyrimidine (SCH 66712) is a potent mechanism-based inactivator of human cytochrome P450 2D6 that displays type I binding spectra with a K(s) of 0.39 ± 0.10 µM. The partition ratio is ~3, indicating potent inactivation that addition of exogenous nucleophiles does not prevent. Within 15 min of incubation with SCH 66712 and NADPH, ∼90% of CYP2D6 activity is lost with only ~20% loss in ability to bind CO and ~25% loss of native heme over the same time. The stoichiometry of binding to the protein was 1.2:1. SDS-polyacrylamide gel electrophoresis with Western blotting and autoradiography analyses of CYP2D6 after incubations with radiolabeled SCH 66712 further support the presence of a protein adduct. Metabolites of SCH 66712 detected by mass spectrometry indicate that the phenyl group on the imidazole ring of SCH 66712 is one site of oxidation by CYP2D6 and could lead to methylene quinone formation. Three other metabolites were also observed. For understanding the metabolic pathway that leads to CYP2D6 inactivation, metabolism studies with CYP2C9 and CYP2C19 were performed because neither of these enzymes is significantly inhibited by SCH 66712. The metabolites formed by CYP2C9 and CYP2C19 are the same as those seen with CYP2D6, although in different abundance. Modeling studies with CYP2D6 revealed potential roles of various active site residues in the oxidation of SCH 66712 and inactivation of CYP2D6 and showed that the phenyl group of SCH 66712 is positioned at 2.2 Å from the heme iron.


Subject(s)
Cytochrome P-450 CYP2D6 Inhibitors , Enzyme Inhibitors/pharmacology , Imidazoles/pharmacology , Pyrimidines/pharmacology , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP2D6/chemistry , Cytochrome P-450 CYP2D6/genetics , Enzyme Inhibitors/chemistry , Escherichia coli/genetics , Heme/chemistry , Humans , Imidazoles/chemistry , Models, Molecular , Protein Binding , Pyrimidines/chemistry , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/genetics
15.
Biochem Mol Biol Educ ; 37(1): 26-36, 2009 Jan.
Article in English | MEDLINE | ID: mdl-21567685

ABSTRACT

Bioinformatics education for undergraduates has been approached primarily in two ways: introduction of new courses with largely bioinformatics focus or introduction of bioinformatics experiences into existing courses. For small colleges such as Kalamazoo, creation of new courses within an already resource-stretched setting has not been an option. Furthermore, we believe that a true interdisciplinary science experience would be best served by introduction of bioinformatics modules within existing courses in biology and chemistry and other complementary departments. To that end, with support from the Howard Hughes Medical Institute, we have developed over a dozen independent bioinformatics modules for our students that are incorporated into courses ranging from general chemistry and biology, advanced specialty courses, and classes in complementary disciplines such as computer science, mathematics, and physics. These activities have largely promoted active learning in our classrooms and have enhanced student understanding of course materials. Herein, we describe our program, the activities we have developed, and assessment of our endeavors in this area.

16.
Biochem Mol Biol Educ ; 36(2): 149-52, 2008 Mar.
Article in English | MEDLINE | ID: mdl-21591181

ABSTRACT

Comprehensive measurement of gene expression using high-density nucleic acid arrays (i.e. microarrays) has become an important tool for investigating the molecular differences in clinical and research samples. Consequently, inclusion of discussion in biochemistry, molecular biology, or other appropriate courses of microarray technologies has become essential in training the modern scientist. The following article offers preparatory and problem-solving questions for engaging students in the understanding of microarray technologies for use in conjunction with other course materials relating to discussions of microarray technology.

17.
Biochem Mol Biol Educ ; 35(2): 138-44, 2007 Mar.
Article in English | MEDLINE | ID: mdl-21591074

ABSTRACT

Cytochrome P450 enzymes are a family of heme-containing proteins located throughout the body with roles in metabolism of endogenous and exogenous compounds. Among exogenous compounds, clinically relevant pharmaceutical agents are nearly all metabolized by P450 enzymes. However, the activity of the different cytochrome P450 enzymes varies among individuals and, therefore, so does drug efficacy as well as susceptibility to side effects and toxicity. Thus, assessing P450 activity is of great interest in drug development and clinical pharmacology. This study investigates the phenotyping of a single P450 activity by analyzing urine samples using isocratic reverse-phase HPLC. Specifically, the activity of human P450 1A2, which converts caffeine into paraxanthine, can be investigated by measuring the change in caffeine and paraxanthine concentrations in urine over time following a single dose of caffeine. There is an observable relationship between caffeine intake and paraxanthine formation that varies among individuals. This laboratory exercise provides a means for simple assessment of P450 1A2 metabolic activity using an HPLC method without additional extraction or purification steps and introduces students to the complexities of individualized medicine as well as the basic biochemical techniques of sample preparation and quantitative HPLC. Furthermore, students may design and test their own hypothesis using these methods.

18.
Biochem Mol Biol Educ ; 34(2): 66-74, 2006 Mar.
Article in English | MEDLINE | ID: mdl-21638641

ABSTRACT

Cytochrome P450 (P450) enzymes include a family of related enzymes that are involved in metabolism of vitamins, steroids, fatty acids, and other chemicals. This review presents a brief historical overview of the discovery and characterization of P450 enzymes extending from intermediary metabolism to the fields of drug metabolism and toxicology. Introductions to P450 enzyme structure and function are also presented. The goals of this review are to 1) provide an introduction to a few of the many aspects of P450 research relating to humans, 2) introduce additional ways of thinking about metabolism, 3) provide some basic examples of P450 enzymology, and 4) provide applications to topics widely taught in undergraduate courses in biochemistry.

19.
Toxicol Lett ; 153(3): 343-55, 2004 Nov 28.
Article in English | MEDLINE | ID: mdl-15454310

ABSTRACT

Oltipraz (OPZ) is a known inducer of glutathione S-transferases and a mechanism-based inhibitor of cytochrome P450 1A2. Given the detoxification characteristics of this compound, the transcriptional effects of OPZ, along with the related naturally occurring compounds 3H-1,2-dithiole-3-thione (D3T) and sulforaphane (SF), were examined by gene expression profiling in murine BV-2 microglial cells, a neuronal macrophage cell type that mediates inflammatory responses in the brain. We show that the three compounds generate largely overlapping transcriptional changes in genes that are associated with detoxification and antioxidant responses. In addition, induction of an antioxidant/detoxification response in the microglial cells by OPZ, D3T, or SF was also able to protect cells from H2O2 -induced toxicity and to attenuate the production of reactive oxygen species in response to lipopolysaccharide treatment of cells. These results show that OPZ, D3T, and SF activate overlapping changes in gene expression and that they can regulate detoxification/antioxidant responses in multiple cells types, including cell types known to have a role in the production of oxidative stress.


Subject(s)
Antioxidants , Microglia/drug effects , Pyrazines/pharmacology , Thiocyanates/pharmacology , Thiones/pharmacology , Thiophenes/pharmacology , Animals , Blotting, Western , Cell Line , Cells, Cultured , DNA, Complementary/biosynthesis , DNA, Complementary/genetics , Hydrogen Peroxide/toxicity , Isothiocyanates , Lipopolysaccharides/pharmacology , Mice , Microscopy, Fluorescence , Oligonucleotide Array Sequence Analysis , Oxidants/toxicity , Oxidative Stress/drug effects , RNA/biosynthesis , RNA/isolation & purification , Reactive Oxygen Species/metabolism , Stimulation, Chemical , Sulfoxides
20.
Arch Biochem Biophys ; 424(2): 163-70, 2004 Apr 15.
Article in English | MEDLINE | ID: mdl-15047188

ABSTRACT

The clinically relevant drug oltipraz (OPZ) has previously been shown to inhibit cytochrome P450 enzymes [Chem. Res. Toxicol. 13 (2000) 245]. The current study reveals that OPZ is also able to inhibit *NO formation by purified inducible nitric oxide synthase (iNOS) but not by neuronal nitric oxide synthase in hemoglobin assays. The inhibition of iNOS by OPZ is reversible and competitive with an IC(50) of 5.9 microM and Ki of 0.6 microM. In murine BV-2 microglial cells, an immortalized cell line that produces *NO in response to lipopolysaccharide (LPS), OPZ is able to block the formation of nitrite in LPS treated cells. The inhibitory effect of OPZ on LPS treated cells is not due to cell toxicity. Finally, treatment of cells with OPZ does not induce or suppress expression of iNOS protein as shown by Western blot analysis.


Subject(s)
Microglia/drug effects , Microglia/metabolism , Nitric Oxide Synthase/chemistry , Nitric Oxide Synthase/metabolism , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Pyrazines/chemistry , Pyrazines/pharmacology , Animals , Apoptosis/drug effects , Cell Line , Cell Survival/drug effects , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/metabolism , Mice , Nitric Oxide/antagonists & inhibitors , Nitric Oxide Synthase/antagonists & inhibitors , Nitric Oxide Synthase Type I , Thiones , Thiophenes
SELECTION OF CITATIONS
SEARCH DETAIL
...