Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Comput Methods Programs Biomed ; 244: 107968, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38064957

ABSTRACT

Pramlintide, an amylin analog, has been coming up as an agent in type 1 diabetes dual-hormone therapies (insulin/pramlintide). Since pramlintide slows down gastric emptying, it allows for easing glucose control and reducing the burden of meal announcements. Pre-clinical in silico evaluations are a key step in the development of any closed-loop strategy. However, mathematical models are needed, and pramlintide models in the literature are scarce. This work proposes a proof-of-concept pramlintide model, describing its subcutaneous pharmacokinetics (PK) and its effect on gastric emptying (PD). The model is validated with published populational (clinical) data. The model development is divided into three stages: intravenous PK, subcutaneous PK, and PD modeling. In each stage, a set of model structures are proposed, and their performance is assessed using the Akaike Information Criterion (AIC) and the Bayesian Information Criterion (BIC). In order to evaluate the modulation of the rate of gastric emptying, a literature meal model was used. The final pramlintide model comprises four compartments and a function that modulates gastric emptying depending on plasma pramlintide. Results show an appropriate fit for the data. Some aspects are left as open questions due to the lack of specific data (e.g., the influence of meal composition on the pramlintide effect). Moreover, further validation with individual data is necessary to propose a virtual cohort of patients.


Subject(s)
Diabetes Mellitus, Type 1 , Islet Amyloid Polypeptide , Humans , Islet Amyloid Polypeptide/pharmacokinetics , Islet Amyloid Polypeptide/therapeutic use , Hypoglycemic Agents/pharmacokinetics , Gastric Emptying , Bayes Theorem , Diabetes Mellitus, Type 1/drug therapy , Insulin , Blood Glucose
2.
Comput Biol Med ; 154: 106605, 2023 03.
Article in English | MEDLINE | ID: mdl-36731362

ABSTRACT

This paper validates a glucoregulatory model including glucagon receptors dynamics in the description of endogenous glucose production (EGP). A set of models from literature are selected for a head-to-head comparison in order to evaluate the role of glucagon receptors. Each EGP model is incorporated into an existing glucoregulatory model and validated using a set of clinical data, where both insulin and glucagon are administered. The parameters of each EGP model are identified in the same optimization problem, minimizing the root mean square error (RMSE) between the simulation and the clinical data. The results show that the RMSE for the proposed receptors-based EGP model was lower when compared to each of the considered models (Receptors approach: 7.13±1.71 mg/dl vs. 7.76±1.45 mg/dl (p=0.066), 8.45±1.38 mg/dl (p=0.011) and 8.99±1.62 mg/dl (p=0.007)). This raises the possibility of considering glucagon receptors dynamics in type 1 diabetes simulators.


Subject(s)
Diabetes Mellitus, Type 1 , Glucagon , Humans , Glucose , Receptors, Glucagon , Insulin , Blood Glucose
3.
J Clin Endocrinol Metab ; 106(1): 55-63, 2021 01 01.
Article in English | MEDLINE | ID: mdl-32852548

ABSTRACT

OBJECTIVE: To evaluate the safety and performance of a new multivariable closed-loop (MCL) glucose controller with automatic carbohydrate recommendation during and after unannounced and announced exercise in adults with type 1 diabetes (T1D). RESEARCH DESIGN AND METHODS: A randomized, 3-arm, crossover clinical trial was conducted. Participants completed a heavy aerobic exercise session including three 15-minute sets on a cycle ergometer with 5 minutes rest in between. In a randomly determined order, we compared MCL control with unannounced (CLNA) and announced (CLA) exercise to open-loop therapy (OL). Adults with T1D, insulin pump users, and those with hemoglobin (Hb)A1c between 6.0% and 8.5% were eligible. We investigated glucose control during and 3 hours after exercise. RESULTS: Ten participants (aged 40.8 ± 7.0 years; HbA1c of 7.3 ± 0.8%) participated. The use of the MCL in both closed-loop arms decreased the time spent <70 mg/dL of sensor glucose (0.0%, [0.0-16.8] and 0.0%, [0.0-19.2] vs 16.2%, [0.0-26.0], (%, [percentile 10-90]) CLNA and CLA vs OL respectively; P = 0.047, P = 0.063) and the number of hypoglycemic events when compared with OL (CLNA 4 and CLA 3 vs OL 8; P = 0.218, P = 0.250). The use of the MCL system increased the proportion of time within 70 to 180 mg/dL (87.8%, [51.1-100] and 91.9%, [58.7-100] vs 81.1%, [65.4-87.0], (%, [percentile 10-90]) CLNA and CLA vs OL respectively; P = 0.227, P = 0.039). This was achieved with the administration of similar doses of insulin and a reduced amount of carbohydrates. CONCLUSIONS: The MCL with automatic carbohydrate recommendation performed well and was safe during and after both unannounced and announced exercise, maintaining glucose mostly within the target range and reducing the risk of hypoglycemia despite a reduced amount of carbohydrate intake.Register Clinicaltrials.gov: NCT03577158.


Subject(s)
Diabetes Mellitus, Type 1/therapy , Dietary Carbohydrates/administration & dosage , Exercise/physiology , Pancreas, Artificial , Adult , Blood Glucose/analysis , Blood Glucose/metabolism , Blood Glucose Self-Monitoring/instrumentation , Cross-Over Studies , Diabetes Mellitus, Type 1/blood , Equipment Design , Equipment Failure Analysis , Female , Glycemic Control/instrumentation , Glycemic Control/methods , Humans , Insulin/administration & dosage , Insulin Infusion Systems , Male , Middle Aged , Spain , Suggestion
SELECTION OF CITATIONS
SEARCH DETAIL
...