Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Org Chem ; 19: 1755-1765, 2023.
Article in English | MEDLINE | ID: mdl-38025088

ABSTRACT

Electron and hole transport characteristics were evaluated for perylene-based and pyrene-based compounds using electron-only and hole-only devices. The perylene presented a columnar hexagonal liquid crystal phase at room temperature with strong molecular π-stacking inside the columns. The pyrene crystallizes bellow 166 °C, preserving the close-packed columnar rectangular structure of the mesophase. Photophysical analysis and numerical calculations assisted the interpretation of positive and negative charge carrier mobilities obtained from fitting the space charge limited regime of current vs voltage curves. The pyrene-based material demonstrated an electron mobility two orders of magnitude higher than the perylene one, indicating the potential of this class of materials as electron transporting layer.

2.
Appl Spectrosc ; 74(7): 751-757, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32031016

ABSTRACT

In the following work, the vibrational spectroscopic characteristics of artepillin C are reported by means of Fourier transform infrared (FT-IR) and Raman spectroscopies, surface-enhanced Raman scattering (SERS), and coherent anti-Stokes Raman scattering (CARS) microscopy. Artepillin C is an interesting compound due to its pharmacological properties, including antitumor activity. It is found as the major component of Brazilian green propolis, a resinous mixture produced by bees to protect their hives against intruders. Vibrational spectroscopic techniques have shown a strong peak at 1599 cm-1, assigned to C=C stretching vibrations from the aromatic ring of artepillin C. From these data, direct visualization of artepillin C could be assessed by means of CARS microscopy, showing differences in the film hydration obtained for its neutral and deprotonated states. Raman-based methods show potential to visualize the uptake and action of artepillin C in biological systems, triggering its interaction with biological systems that are needed to understand its mechanism of action.


Subject(s)
Phenylpropionates/chemistry , Molecular Conformation , Propolis/chemistry , Spectrum Analysis, Raman
3.
Langmuir ; 35(11): 4110-4116, 2019 Mar 19.
Article in English | MEDLINE | ID: mdl-30789741

ABSTRACT

Nanostructures with concave shapes made from continuous segments of plasmonic metals are known to dramatically enhance Raman scattering. Their synthesis in solutions is hindered, however, by their thermodynamic instability due to large surface area and high curvature of refracted geometries with nanoscale dimensions. Herein, we show that nanostructures with concave geometries can spontaneously form via self-organization of gold nanoparticles (NPs) at the air-water interface. The weakly bound surface ligands on the particle surface make possible their spontaneous accumulation and self-assembly at the air-water interface, forming monoparticulate films. Upon heating to 80 °C, the NPs further assemble into concave nanostructures where NPs are cold-welded to each other. Furthermore, the nanoassemblies effectively adsorb molecular analytes during their migration from the bulk solution to the surface where they can be probed by laser spectroscopies. We demonstrate that these films with local concentration of analytes increased by orders of magnitude and favorable plasmonic shapes can be exploited for surface-enhanced Raman scattering for high-sensitivity analysis of aliphatic molecules.

4.
J Nanosci Nanotechnol ; 19(7): 3734-3743, 2019 07 01.
Article in English | MEDLINE | ID: mdl-30764929

ABSTRACT

Carbendazim (MBC) is a fungicide widely used in agriculture which allows the high productivity of several cultures, a necessary condition considering the growing of the world population. Moreover, MBC has environmental impact mainly on the soil and water sources, and consequently, on animal and human lives. However, even though the toxicity of fungicides is well established, their action mechanism in cell membranes are not completely understood. Herein, we investigate the interaction of different polar headgroups: dimethyldioctadecylammonium bromide (DODAB), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) and 1,2-dipalmitoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG); and different chain unsaturation degrees DPPC, 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) with MBC. Lipid monolayers at the air/water interface were applied as mimetic systems of cell membranes to investigate the interaction with MBC dissolved in the ultrapure water subphase. It was found that the interaction is driven preferably by electrostatic forces of the headgroups, with higher affinity for DODAB (cationic), intermediate for DPPC (zwitterionic), and absent for DPPG (anionic), considering the monolayer in the condensed phase. DODAB-MBC electrostatic interaction was consistent with FTIR (cast films). We also investigated giant unilamellar vesicles (GUVs) of zwitterionic lipids (DPPC, POPC, and DOPC) with distinct chain unsaturations in the presence of MBC by confocal microscopy and molecular dynamic (MD) simulations. The results indicate that, unlike the chain unsaturation, the polar headgroups play key role on the lipid-MBC interaction.

5.
Adv Mater ; 30(35): e1707598, 2018 Aug.
Article in English | MEDLINE | ID: mdl-30003590

ABSTRACT

This work calls for a paradigm shift in order to change the operational patterns of self-regulated membranes in response to chemical signals. To this end, the fabrication of a retrofitting material is introduced aimed at developing an innovative generation of porous substrates endowed with symbiotic but fully independent sensing and actuating capabilities. This is accomplished by transferring carefully engineered plasmonic architectures onto commercial microfiltration membranes lacking of such features. The integration of these materials leads to the formation of a coating surface proficient for ultrasensitive detection and "on-command" gating. Both functionalities can be synergistically modulated by the spatial and temporal distribution of an impinging light beam offering an unprecedented control over the membrane performance in terms of permeability. The implementation of these hybrid nanocomposites in conventional polymeric porous materials holds great potential in applications ranging from intelligent fluid management to advanced filtration technologies and controlled release.

6.
Talanta ; 174: 652-659, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-28738637

ABSTRACT

We report the electrochemical detection of estriol using carbon black nanoballs (CNB) decorated with silver nanoparticles (AgNP) as electrode material. Homogeneous, porous films on glassy carbon electrodes (GCE) were obtained, with diameters of 20 - 25nm for CNB and 5 - 6nm for AgNP. CNB/AgNP electrodes had increased conductivity and electroactive area in comparison with bare GCE and GCE/CNB, according to cyclic voltammetry and electrochemical impedance spectroscopy. The oxidation potential peak was also down shifted by 93mV, compared to the bare GC electrode. Differential pulse voltammetry data were obtained in 0.1molL-1 PBS (pH 7.0) to detect estriol without the purification step, in the linear range between 0.2 and 3.0µmolL-1 with detection and quantification limits of 0.16 and 0.5µmolL-1 (0.04 and 0.16mgL-1), respectively. The sensor was used to detect estriol in a creek water sample with the same performance as in the official methodology based on high performance liquid chromatography.


Subject(s)
Chemistry Techniques, Analytical/instrumentation , Estriol/analysis , Hormones/analysis , Limit of Detection , Silver/chemistry , Soot/chemistry , Water/chemistry , Electrochemistry , Endocrine Disruptors/analysis , Oxidation-Reduction , Water Pollutants, Chemical/analysis
7.
J Nanosci Nanotechnol ; 17(1): 460-66, 2017 01.
Article in English | MEDLINE | ID: mdl-29624317

ABSTRACT

Thin films of regioregular polythiophene derivatives have had their optical, structural and morphological properties characterized, but there is still a lack of comparative studies to determine the effect from deposition techniques, especially on the electrical properties. In this study, we produced Langmuir-Schaefer and spin-coated films of regioregular alkyl-substituted polythiophene derivatives (P3AT) to investigate how distinct supramolecular arrangements can affect their properties. The Langmuir-Schaefer films deposited on indium-tin oxide substrates were observed to grow linearly with the number of layers, according to UV-visible absorption spectroscopy. Atomic force microscopy and Brewster angle microscopy were carried out for morphological characterization. From electrical transport measurements, the DC electrical conductivity of Langmuir-Schaefer films of P3AT was higher than the corresponding spin-coated films, which can be related to the dissimilar roughness and molecular-level organization provided by the Langmuir-Schaefer technique.

8.
Anal Chim Acta ; 926: 88-98, 2016 Jul 05.
Article in English | MEDLINE | ID: mdl-27216397

ABSTRACT

We report on the synthesis, characterization and applications of a Printex L6 carbon-silver hybrid nanomaterial (PC-Ag), which was obtained using a polyol method. In addition, we also highlight the use of Printex L6 nano-carbon as a much cheaper alternative to the use of carbon nanotubes and graphene. The silver nanoparticles (AgNP) were prepared directly on the surface of the Printex 6L carbon "nanocarbon" material using ethylene glycol as the reducing agent. The hybrid nanomaterial was characterized by High-angle annular dark-field transmission electron microscopy (HAADF-TEM), energy-dispersive X-ray spectroscopy (EDX), selected area electron diffraction (SAED), Raman spectroscopy and cyclic voltammetry. Optimized electrocatalytic activity on glassy carbon electrode was reached for the architecture GC/PC-Ag, the silver nanoparticles with size ranging between 1 and 2 nm were well-distributed throughout the hybrid material. The synergy between PC nano-carbons and AgNPs was verified by detection of gallic acid (GA) at a low applied potential (0.091 V vs. Ag/AgCl). GA detection was performed in a concentration range between 5.0 × 10(-7) and 8.5 × 10(-6) mol L(-1), with a detection limit of 6.63 × 10(-8) mol L(-1) (66.3 nmol L(-1)), which is considerably lower than similar devices. The approach for fabricating the reproducible GC/PC-Ag electrodes is entirely generic and may be explored for other types of (bio)sensors and devices.


Subject(s)
Antioxidants/pharmacology , Carbon/chemistry , Nanoparticles/chemistry , Silver/chemistry , Chromatography, Gas , Microscopy, Electron, Transmission , Spectrum Analysis/methods
9.
Langmuir ; 29(24): 7542-50, 2013 Jun 18.
Article in English | MEDLINE | ID: mdl-23356548

ABSTRACT

The control of molecular architectures has been exploited in layer-by-layer (LbL) films deposited on Au interdigitated electrodes, thus forming an electronic tongue (e-tongue) system that reached an unprecedented high sensitivity (down to 10(-12) M) in detecting catechol. Such high sensitivity was made possible upon using units containing the enzyme tyrosinase, which interacted specifically with catechol, and by processing impedance spectroscopy data with information visualization methods. These latter methods, including the parallel coordinates technique, were also useful for identifying the major contributors to the high distinguishing ability toward catechol. Among several film architectures tested, the most efficient had a tyrosinase layer deposited atop LbL films of alternating layers of dioctadecyldimethylammonium bromide (DODAB) and 1,2-dipalmitoyl-sn-3-glycero-fosfo-rac-(1-glycerol) (DPPG), viz., (DODAB/DPPG)5/DODAB/Tyr. The latter represents a more suitable medium for immobilizing tyrosinase when compared to conventional polyelectrolytes. Furthermore, the distinction was more effective at low frequencies where double-layer effects on the film/liquid sample dominate the electrical response. Because the optimization of film architectures based on information visualization is completely generic, the approach presented here may be extended to designing architectures for other types of applications in addition to sensing and biosensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...