Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 12(1): 8250, 2022 May 17.
Article in English | MEDLINE | ID: mdl-35581373

ABSTRACT

The effect of the pressureless post-sintering in hydrogen on the structural and mechanical properties of the hot isostatic pressed Al2O3 prepared by oxidized AlN powder has been studied. The micrometer size AlN powder has been oxidized in air at 900° C and sintered by hot isostatic pressing (HIP) at 1700 °C, 20 MPa nitrogen atmosphere for 5 h. Pressureless sintering (PS) has been applied for all HIP sintered samples in H2 gas at 1800° C for 10 h. It has been shown that the oxidation caused a core-shell AlN/Al2O3 structure and the amount of Al2O3 increased with increasing of the oxidation time of the AlN powder. For the first time, the green samples obtained from oxidized AlN powder have been successfully sintered first by HIP followed by post-sintering by PS under hydrogen without adding any sintering additives. All post-sintered samples exhibited the main α-Al2O3 phase. Sintering in H2 caused the full transformation of AlN to α-Al2O3 phase and their better densification. Therefore, the hardness values of post-sintered samples have been increased to 17-18 GPa having apparent densities between 3.11 and 3.39 g/cm3.

2.
Mater Sci Eng C Mater Biol Appl ; 62: 249-59, 2016 May.
Article in English | MEDLINE | ID: mdl-26952421

ABSTRACT

In our research nanostructured silver and zinc doped calcium-phosphate (CaP) bioceramic coatings were prepared on commonly used orthopaedic implant materials (Ti6Al4V). The deposition process was carried out by the pulse current technique at 70 °C from electrolyte containing the appropriate amount of Ca(NO3)2 and NH4H2PO4 components. During the electrochemical deposition Ag(+) and Zn(2+) ions were introduced into the solution. The electrochemical behaviour and corrosion rate of the bioceramic coatings were investigated by potentiodynamic polarization and Electrochemical Impedance Spectroscopy (EIS) measurements in conventional Ringer's solution in a three electrode open cell. The coating came into contact with the electrolyte and corrosion occurred during immersion. In order to achieve antimicrobial properties, it is important to maintain a continuous release of silver ions into physiological media, while the bioactive CaP layer enhances the biocompatibility properties of the layer by fostering the bone cell growth. The role of Zn(2+) is to shorten wound healing time. Morphology and composition of coatings were studied by Scanning Electron Microscopy, Transmission Electron Microscopy and Energy-dispersive X-ray spectroscopy. Differential thermal analyses (DTA) were performed to determine the thermal stability of the pure and modified CaP bioceramic coatings while the structure and phases of the layers were characterized by X-ray diffraction (XRD) measurements.


Subject(s)
Calcium Phosphates/chemistry , Coated Materials, Biocompatible/chemistry , Silver/chemistry , Zinc/chemistry , Alloys , Coated Materials, Biocompatible/pharmacology , Corrosion , Dielectric Spectroscopy , Electrolytes/chemistry , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Spectrometry, X-Ray Emission , Surface Properties , Thermogravimetry , Titanium/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...