Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Preprint in English | bioRxiv | ID: ppbiorxiv-450244

ABSTRACT

SARS-CoV-2, depends on host cell components for replication, therefore the identification of virus-host dependencies offers an effective way to elucidate mechanisms involved in viral infection. Such host factors may be necessary for infection and replication of SARS-CoV-2 and, if druggable, presents an attractive strategy for anti-viral therapy. We performed genome wide CRISPR knockout screens in Vero E6 cells and 4 human cell lines including Calu-3, Caco-2, Hek293 and Huh7 to identify genetic regulators of SARS-CoV-2 infection. Our findings identified only ACE2, the cognate SARS-CoV-2 entry receptor, as a common host dependency factor across all cell lines, while all other host genes identified were cell line specific including known factors TMPRSS2 and CTSL. Several of the discovered host-dependency factors converged on pathways involved in cell signalling, lipid metabolism, immune pathways and chromatin modulation. Notably, chromatin modulator genes KMT2C and KDM6A in Calu-3 cells had the strongest impact in preventing SARS-CoV-2 infection when perturbed. Overall, the network of host factors that have been identified will be broadly applicable to understanding the impact of SARS-CoV-2 on human cells and facilitate the development of host-directed therapies. IN BRIEFSARS-CoV-2, depends on host cell components for infection and replication. Genome-wide CRISPR screens were performed in multiple human cell lines to elucidate common host dependencies required for SARS-CoV-2 infection. Only ACE2, the cognate SARS-CoV-2 entry receptor, was common amongst cell lines, while all other host genes identified were cell line specific, several of which converged on pathways involved in cell signalling, lipid metabolism, immune pathways, and chromatin modulation. Overall, a network of host factors was identified that will be broadly applicable to understanding the impact of SARS-CoV-2 on human cells and facilitate productive targeting of host genes and pathways. HIGHLIGHTS- Genome-wide CRISPR screens for SARS-CoV-2 in multiple human cell lines - Identification of wide-ranging cell-type dependent genetic dependencies for SARS-CoV-2 infection - ACE2 is the only common host factor identified across different cell types

2.
Preprint in English | bioRxiv | ID: ppbiorxiv-341636

ABSTRACT

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which causes Coronavirus Disease 2019 (COVID-19), has caused a global pandemic. Antibodies are powerful biotherapeutics to fight viral infections; however, discovery of the most potent and broadly acting clones can be lengthy. Here, we used the human apoferritin protomer as a modular subunit to drive oligomerization of antibody fragments and transform antibodies targeting SARS-CoV-2 into exceptionally potent neutralizers. Using this platform, half-maximal inhibitory concentration (IC50) values as low as 9 x 10-14 M were achieved as a result of up to 10,000-fold potency enhancements. Combination of three different antibody specificities and the fragment crystallizable (Fc) domain on a single multivalent molecule conferred the ability to overcome viral sequence variability together with outstanding potency and Ig-like in vivo bioavailability. This MULTi-specific, multi-Affinity antiBODY (Multabody; or MB) platform contributes a new class of medical countermeasures against COVID-19 and an efficient approach to rapidly deploy potent and broadly-acting therapeutics against infectious diseases of global health importance. One Sentence Summarymultimerization platform transforms antibodies emerging from discovery screens into potent neutralizers that can overcome SARS-CoV-2 sequence diversity.

3.
Preprint in English | medRxiv | ID: ppmedrxiv-20166553

ABSTRACT

While the antibody response to SARS-CoV-2 has been extensively studied in blood, relatively little is known about the mucosal immune response and its relationship to systemic antibody levels. Since SARS-CoV-2 initially replicates in the upper airway, the antibody response in the oral cavity is likely an important parameter that influences the course of infection, but how it correlates to the antibody response in serum is not known. Here, we profile by enzyme linked immunosorbent assays (ELISAs) IgG, IgA and IgM responses to the SARS-CoV-2 spike protein (full length trimer) and its receptor binding domain (RBD) in serum (n=496) and saliva (n=90) of acute and convalescent patients with laboratory-diagnosed COVID-19 ranging from 3-115 days post-symptom onset (PSO), compared to negative controls. Anti-CoV-2 antibody responses were readily detected in serum and saliva, with peak IgG levels attained by 16-30 days PSO. Whereas anti-CoV-2 IgA and IgM antibodies rapidly decayed, IgG antibodies remained relatively stable up to 105 days PSO in both biofluids. In a surrogate neutralization ELISA (snELISA), neutralization activity peaks by 31-45 days PSO and slowly declines, though a clear drop is detected at the last blood draw (105-115 days PSO). Lastly, IgG, IgM and to a lesser extent IgA responses to spike and RBD in the serum positively correlated with matched saliva samples. This study confirms that systemic and mucosal humoral IgG antibodies are maintained in the majority of COVID-19 patients for at least 3 months PSO. Based on their correlation with each other, IgG responses in saliva may serve as a surrogate measure of systemic immunity. One Sentence SummaryIn this manuscript, we report evidence for sustained SARS-CoV-2-specific IgG and transient IgA and IgM responses both at the site of infection (mucosae) and systemically in COVID-19 patients over 3 months and suggest that saliva could be used as an alternative biofluid for monitoring IgG to SARS-CoV-2 spike and RBD antigens.

SELECTION OF CITATIONS
SEARCH DETAIL
...