Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Language
Publication year range
1.
BMC Plant Biol ; 24(1): 268, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38605320

ABSTRACT

BACKGROUND: Considering the challenges posed by nitrogen (N) pollution and its impact on food security and sustainability, it is crucial to develop management techniques that optimize N fertilization in croplands. Our research intended to explore the potential benefits of co-inoculation with Azospirillum brasilense and Bacillus subtilis combined with N application rates on corn plants. The study focused on evaluating corn photosynthesis-related parameters, oxidative stress assay, and physiological nutrient use parameters. Focus was placed on the eventual improved capacity of plants to recover N from applied fertilizers (AFR) and enhance N use efficiency (NUE) during photosynthesis. The two-year field trial involved four seed inoculation treatments (control, A. brasilense, B. subtilis, and A. brasilense + B. subtilis) and five N application rates (0 to 240 kg N ha-1, applied as side-dress). RESULTS: Our results suggested that the combined effects of microbial consortia and adequate N-application rates played a crucial role in N-recovery; enhanced NUE; increased N accumulation, leaf chlorophyll index (LCI), and shoot and root growth; consequently improving corn grain yield. The integration of inoculation and adequate N rates upregulated CO2 uptake and assimilation, transpiration, and water use efficiency, while downregulated oxidative stress. CONCLUSIONS: The results indicated that the optimum N application rate could be reduced from 240 to 175 kg N ha-1 while increasing corn yield by 5.2%. Furthermore, our findings suggest that replacing 240 by 175 kg N ha-1 of N fertilizer (-65 kg N ha-1) with microbial consortia would reduce CO2 emission by 682.5 kg CO2 -e ha-1. Excessive N application, mainly with the presence of beneficial bacteria, can disrupt N-balance in the plant, alter soil and bacteria levels, and ultimately affect plant growth and yield. Hence, highlighting the importance of adequate N management to maximize the benefits of inoculation in agriculture and to counteract N loss from agricultural systems intensification.


Subject(s)
Fertilizers , Zea mays , Nitrogen/analysis , Carbon Dioxide , Agriculture , Soil
2.
Front Plant Sci ; 13: 1046642, 2022.
Article in English | MEDLINE | ID: mdl-36714773

ABSTRACT

Introduction: Plant growth-promoting bacteria (PGPBs) could be developed as a sustainable strategy to promote plant growth and yield to feed the ever-growing global population with nutritious food. Foliar application of nano-zinc oxide (ZnO) is an environmentally safe strategy that alleviates zinc (Zn) malnutrition by improving biochemical attributes and storage proteins of grain. Methods: In this context, the current study aimed to investigate the combined effect of seed inoculation with PGPBs and foliar nano-ZnO application on the growth, biochemical attributes, nutrient metabolism, and yield of maize in the tropical savannah of Brazil. The treatments consisted of four PGPB inoculations [i.e., without inoculation, Azospirillum brasilense (A. brasilense), Bacillus subtilis (B. subtilis), Pseudomonas fluorescens (P. fluorescens), which was applied on the seeds] and two doses of Zn (i.e., 0 and 3 kg ha-1, applied from nano-ZnO in two splits on the leaf). Results: Inoculation of B. subtilis with foliar ZnO application increased shoot dry matter (7.3 and 9.8%) and grain yield (17.1 and 16.7%) in 2019-20 and 2020-2021 crop seasons respectively. Inoculation with A. brasilense increased 100-grains weight by 9.5% in both crop seasons. Shoot Zn accumulation was improved by 30 and 51% with inoculation of P. fluorescens in 2019-20 and 2020-2021 crop seasons. Whereas grain Zn accumulation was improved by 49 and 50.7% with inoculation of B. subtilis and P. fluorescens respectively. In addition, biochemical attributes (chlorophyll a, b and total, carotenoids, total soluble sugar and amino acids) were improved with inoculation of B. subtilis along with foliar nano ZnO application as compared to other treatments. Co-application of P. fluorescens with foliar ZnO improved concentration of grains albumin (20 and 13%) and globulin (39 and 30%). Also, co-application of B. subtilis and foliar ZnO improved concentration of grains glutelin (8.8 and 8.7%) and prolamin (15 and 21%) in first and second seasons. Discussion: Therefore, inoculation of B. subtilis and P. fluorescens with foliar nano-ZnO application is considered a sustainable and environmentally safe strategy for improving the biochemical, metabolic, nutritional, and productivity attributes of maize in tropical Savannah regions.

3.
J Environ Sci Health B ; 56(9): 852-859, 2021.
Article in English | MEDLINE | ID: mdl-34405759

ABSTRACT

Growth traits, yield, N content, photosynthetic pigments, ammonia and amino acids were measured to verify the effect of the interaction between N, Ni, and 2,4-D applied in the cotton crop. The objective was to study the hormonal effect of 2,4-D associated with the application of N and Ni in coverage to improve yield. The N (0, 40, 80, and 120 kg ha-1) and Ni(0, 300, 450, and 600 g ha-1) were applied to the soil in the square phenological growth stage. The commercial 2,4-D DMA® BR (0 and 1.8 g a.e ha-1) was applied to the leaves at the same growth stage. The supply of N in cover fertilization up to 120 kg ha-1 was beneficial for cotton, providing greater yield and content of photosynthetic pigments. The application of 2,4-D in a hormetic dose, as a synthetic auxin during the beginning of flowering, proved to be a promising technique to improve cotton yield. This end-of-cycle response is related to the requirement for auxins during the cotton fruiting process.


Subject(s)
Nickel , Nitrogen , 2,4-Dichlorophenoxyacetic Acid , Gossypium , Nitrogen/analysis , Soil
4.
Genet. mol. biol ; 28(2): 271-276, 2005. ilus, tab
Article in English | LILACS | ID: lil-416298

ABSTRACT

The present paper deals with estimation of variance components, prediction of breeding values and selection in a population of rubber tree [Hevea brasiliensis (Willd. ex Adr. de Juss.) Müell.-Arg.] from Rio Branco, State of Acre, Brazil. The REML/BLUP (restricted maximum likelihood/best linear unbiased prediction) procedure was applied. For this purpose, 37 rubber tree families were obtained and assessed in a randomized complete block design, with three unbalanced replications. The field trial was carried out at the Experimental Station of UNESP, located in Selvíria, State of Mato Grosso do Sul, Brazil. The quantitative traits evaluated were: girth (G), bark thickness (BT), number of latex vessel rings (NR), and plant height (PH). Given the unbalanced condition of the progeny test, the REML/BLUP procedure was used for estimation. The narrow-sense individual heritability estimates were 0.43 for G, 0.18 for BT, 0.01 for NR, and 0.51 for PH. Two selection strategies were adopted: one short-term (ST - selection intensity of 8.85 percent) and the other long-term (LT - selection intensity of 26.56 percent). For G, the estimated genetic gains in relation to the population average were 26.80 percent and 17.94 percent, respectively, according to the ST and LT strategies. The effective population sizes were 22.35 and 46.03, respectively. The LT and ST strategies maintained 45.80 percent and 28.24 percent, respectively, of the original genetic diversity represented in the progeny test. So, it can be inferred that this population has potential for both breeding and ex situ genetic conservation as a supplier of genetic material for advanced rubber tree breeding programs.


Subject(s)
Hevea/genetics , Plant Breeding , Genetic Variation , Population Density
SELECTION OF CITATIONS
SEARCH DETAIL
...